1.Cho các số p = bc + a ; q = ab + c ; r = ca + b là các số nguyên tố ( a, b,c thuộc N*)
Chứng minh rằng ba số p,q,r có ít nhất 2 số bằng nhau
2. Tính tổng số đo các góc ở đỉnh các cánh của ngôi sao 5 cánh
3. Cho xyz = 1 Tính A= \(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
help mai mình cần rồi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(1)\)\(p+q+r=b^c+a+a^b+c+c^a+b\)
\(p+q+r=\left(a^b+a\right)+\left(b^c+b\right)+\left(c^a+c\right)\)
\(p+q+r=a\left(a^{b-1}+1\right)+b\left(b^{c-1}+1\right)+c\left(c^{a-1}+1\right)\)
Nếu a, b, c lẻ thì \(a^{b-1};b^{c-1};c^{a-1}\) lẻ và a, b, c chẵn thì các tích cũng chẵn
\(\Rightarrow\)\(p+q+r\) chẵn
Mà trong 3 số tự nhiên bất kì a, b, c sẽ có ít nhất 2 số cùng chẵn hoặc lẻ
Giả sử 2 số đó là a và b
Vì \(b^c\) và b cùng tính chẵn lẻ nên \(p=b^c+a\) chẵn ( lẻ + lẻ = chẵn hoặc chẵn + chẵn = chẵn )
Mà p là số nguyên tố nên \(p=2\)
\(a,b\inℕ^∗\) nên \(a=b=1\)
\(\Rightarrow\)\(q=a^b+c=1+c=c+1=c^a+b=r\)
Tương tự với b và c; c và a cùng tính chẵn lẻ thì đều có ít nhất 2 số bằng nhau ( đpcm )
Chúc bạn học tốt ~