K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA. a) Chứng minh EH \(\perp\)BC . b) Chứng minh BE là đường trung trực của AH. c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC. d) Chứng minh AH // KC. e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng. 2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm. Tìm độ dài...
Đọc tiếp

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA.
a) Chứng minh EH \(\perp\)BC .
b) Chứng minh BE là đường trung trực của AH.
c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC.
d) Chứng minh AH // KC.
e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng.

2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm.
Tìm độ dài cạnh NP?
b) Cho tam giác DEF có DE = 10 cm; DF = 24cm; EF = 26cm. Chứng minh tam giác DEF vuông?

3. Cho \(\Delta\)ABC cân tại A có AB = 5cm, BC = 6cm.
Kẻ AD vuông góc với BC (D \(\in\) BC ).
a) Tìm các tam giác bằng nhau trong hình.
b) Tính độ dài AD ?

4. Cho tam giác ABC vuông tại A, có \(\widehat{B}\) và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: \(\Delta\)ABD = \(\Delta\)EBD.
b) Chứng minh: \(\Delta\)ABE là tam giác đều.
c) Tính độ dài cạnh BC.

5. Cho góc xOy .Trên Ox lấy điểm A , trên Oy lấy điểm B sao cho
OA = OB . Qua A kẻ đường thẳng a vuông góc với Ox ; qua B kẻ đường thẳng b vuông góc với Oy . Hai đường thẳng a và b cắt nhau tại C . Chứng minh rằng :
a ) \(\Delta\)OAC = \(\Delta\)OBC.

b) CA = CB
c) OC là phân giác của góc xOy .

6. Cho \(\Delta\)ABC cân tại A, có \(\widehat{B}\) = 700 . Tính độ \(\widehat{A}\) ?

7. Cho \(\Delta\)ABC cân tại A, AB = AC = 5 cm; BC = 8 cm. Kẻ AH \(\perp\) BC (H \(\in\)BC)
a) Chứng minh HB = HC
b) Tính AH.
c) Kẻ HD \(\perp\) AB (D \(\in\)AB); HE \(\perp\) AC (E \(\in\)AC). CMR: \(\Delta\)HDE là tam giác cân.

1
12 tháng 5 2018

a. Xét tam giác BAE và tam giác BHE có:

BA=BH

BE chung

góc ABE=HBE ( phân giác BE )

=> tam giác BAE = tam giác BHE (c.g.c)

=> góc BAE=BHE ( 2 góc tương ứng)

mà góc BAE= 90 độ

=> góc BHE=90 độ => EH ⊥BC .

b.tam giác BAE = tam giác BHE => BA=BH và AE=EH

=> BE là đường trung trực của AH

c.Xét tam giác AKE và tam giác HCE có:

góc AEK=HEC ( đối đỉnh)

AE=EH

góc EAK=EHC (= 90 độ)

=> tam giác AKE = tam giác HCE (g.c.g)

=> EK=EC

d.Có: BA=BH => tam giác BAH cân tại B

=> góc BHA= 180 độ - góc HBA / 2 (1)

Có: BC=BH+HC

BK=BA+AK

mà BH=BA

HC=AK ( do tam giác AKE = tam giác HCE )

=> BC=BK => tam giác BCK cân tại B

=> góc BCK=180 độ - góc HBA /2 (2)

Từ (1) (2) => góc BHA=BCK

mà 2 góc ở vị trí đồng vị

=> AH//CK

e. Xét tam giác BMC và tam giác BMK có:

BC=BK

CM=KM ( M là trung điểm của KC )​

BM chung

=> tam giác BMC = tam giác BMK (c.c.c)

=> góc MBC=MBK => BM là tia phân giác của góc B

mà BE cũng là phân giác của góc B

=> ba điểm B, E, M thẳng hàng.

24 tháng 3 2020

Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.

a,Chứng minh AB = AC.

b,Tính số đo góc CAO

c,Tam giác ABC là tam giác gì ? Vì sao ?

d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO

e,Tính số đo góc CBO?

g,Chứng minh AO là đường trung trực của BC?

Các bạn giúp mình với,huhukhocroi

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Vì \(\widehat A = 105^\circ  > 90^\circ \) nên là góc tù. Do đóc góc A là góc lớn nhất trong tam giác ABC

Cạnh BC đối diện với góc A nên là cạnh lớn nhất trong tam giác ABC

Vậy cạnh lớn nhất của tam giác ABC là cạnh BC.

b) Vì tam giác có góc A là góc tù

\( \Rightarrow \)Tam giác ABC là tam giác tù

\(\widehat{B}+\widehat{C}=140^0\)

\(\Leftrightarrow4\cdot\widehat{C}=140^0\)

\(\Leftrightarrow\widehat{C}=35^0\)

hay \(\widehat{B}=105^0\)

Vậy:  ΔABC tù

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Do \(\widehat{A}=100^0>90^0\) nên là góc tù, do đó, \(\widehat{A}\) là góc lớn nhất trong tam giác ABC.

\( \Rightarrow \) BC là cạnh lớn nhất của tam giác ABC (do BC đối diện với góc A trong tam giác ABC)

b) 

Theo định lí tổng 3 góc trong tam giác ABC, ta có:

\( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat C = {180^o} - {100^o} - {40^o} = {40^o}\)

 \( \Rightarrow\widehat C = \widehat B = {40^o}\)

\( \Rightarrow \) ABC là tam giác cân tại A.

17 tháng 9 2023

Vì \(\widehat A = \widehat {A'},\widehat C = \widehat {C'}\)mà tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat {B'}\).

Xét hai tam giác ABC và A’B’C’ có: \(\widehat A = \widehat {A'}\), AB = A’B’, \(\widehat B = \widehat {B'}\).

Vậy \(\Delta ABC = \Delta A'B'C'\)(g.c.g)

16 tháng 12 2021

A

16 tháng 12 2021

B

5 tháng 7 2021

Có \(\widehat{B}=180^0-105^0-30^0=45^0\)

Kẻ AH vuông góc với BC

 \(\Rightarrow\Delta ABH\) là tam giác vuông cân tại A

\(\Rightarrow AH=BH\)

Có \(tanC=\dfrac{AH}{HC}\Leftrightarrow HC=\dfrac{AH}{tan30^0}=\sqrt{3}AH\)

\(\Rightarrow BH+CH=AH+\sqrt{3}AH\Leftrightarrow BC=\left(1+\sqrt{3}\right)AH\)\(\Leftrightarrow AH=\dfrac{BC}{1+\sqrt{3}}=\dfrac{2}{1+\sqrt{3}}\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.\dfrac{2}{1+\sqrt{3}}.2=\dfrac{2}{1+\sqrt{3}}\) (cm2)

Vậy...

16 tháng 12 2021

Chọn A

16 tháng 12 2021

A

NV
27 tháng 7 2021

Kẻ đường cao AH ứng với BC

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AH=AC.sinC\)

\(cosC=\dfrac{CH}{AC}\Rightarrow CH=AC.cosC\)

Trong tam giác vuông ABH:

\(tanB=\dfrac{AH}{BH}\Rightarrow BH=\dfrac{AH}{tanB}=\dfrac{AC.sinC}{tanB}\)

Do đó:

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH\left(BH+CH\right)=\dfrac{1}{2}.4,5.sin55^0.\left(\dfrac{4,5.sin55^0}{tan60^0}+4,5.cos55^0\right)\approx8,68\left(cm^2\right)\)

NV
27 tháng 7 2021

undefined