K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Giả sử 2 tam giác đồng dạng là ABC và DEF, 2 cạnh bé nhất của 2 tam giác lần  lượt là AB và DE.

Khi đó:  A B D E = 2 5

Vì ΔABC ~ ΔDEF nên:

A B D E = B C E F = C A F D = A B + B C + C A D E + E F + F D = 2 5 ⇒ p p ' = 2 5 ⇔ p = 2 5 p '

Ta lại có: p’ - p = 18

=> p’ - 2 5 p’ = 18 ⇔ p’ = 30

=> p = 2 5 p’ = 12

Đáp án: A

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78
18 tháng 4 2020

xdhxef

18 tháng 4 2020

6.)

Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất  của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.

Theo đề:\(A'B'\)=4,5

Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

    \(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)

   \(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)

15 tháng 4 2020

Bài 2 : 

vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :

AEEB=ECBCAEEB=ECBC

⇒⇒ CE=AB.BCABCE=AB.BCAB

⇒⇒ CE=AE.23CE=AE.23

⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2

⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC

⇒⇒ CE=2AC=6(cm) 

Bài 1: Giải

Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)

k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23

Chu vi của tam giác 1 là:

12+16+18=46(m)12+16+18=46(m)

⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)

Cạnh thứ hai của tam giác đồng dạng (2) là:

16:23=24(m)16:23=24(m)

Cạnh lớn nhất của tam giác đồng dạng (2) đó là:

69−24−18=27(m

Bài 3 tớ k bt lm 

15 tháng 4 2020

copy mạng nhớ ghi nguồn nhé bạn =))))

học tốt bro :))

~~

20 tháng 4 2020

Hướng dẫn cách hack VIP OLM Vĩnh Viễn siêu dễ chỉ 10 phút là xong: youtube.com/watch?v=zYcnHqUcGZE&t

b) Ta có: ΔMNP∼ΔDEF(cmt)

nên \(\dfrac{C_{MNP}}{C_{DEF}}=k\)

hay \(\dfrac{C_{MNP}}{C_{DEF}}=\dfrac{3}{5}\)

 

1 tháng 3 2023

`a) ΔA'B'C' ∼ ΔABC` theo tỉ lệ đồng dạng `k = 2/5`

`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = 2/5`

Theo tính chất dãy tỉ số bằng nhau

`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = (A'B' + A'C' + B'C')/(AB + AC + BC) = 2/5`

`=> (PΔA'B'C')/(PΔABC) = 2/5`

b) Từ a) ta có: `(PΔA'B'C')/(PΔABC) = 2/5`

`=> (PΔA'B'C')/2 = (PΔABC)/5`

Áp dụng tính chất dãy tỉ số bằng nhau:

`=>  (PΔA'B'C')/2 = (PΔABC)/5 = (PΔABC - PΔA'B'C')/(5-2) = 30/3 = 10`

`=> PΔA'B'C' = 10 xx 2 = 20 (cm)`

`PΔABC = 10 xx 5 = 50 (cm)`