K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

a) Điều kiện để mẫu số của A khác 0 là n khác 3

Nếu n=14 thay vào A có A =\(\frac{6}{14-3}=\frac{6}{11}\)

Nếu n=5 thay vào A có: A=\(\frac{6}{5-3}=\frac{6}{2}=3\)

Nếu n=3 ko thỏa mãn điều kiện => ko tìm được giá trị của A

b) Có \(n\inℤ\Rightarrow n-3\inℤ\)

Có \(A\inℤ\Leftrightarrow\frac{6}{n-3}\inℤ\Leftrightarrow n-3\inƯ\left(6\right)\)( Vì \(n-3\inℤ\))

Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow n-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow n\in\left\{4;2;5;1;6;0;9;-3\right\}\)(Thỏa mãn điều kiện n khác 3 và \(n\inℤ)\)

Vậy \(n\in\left\{4;2;5;1;6;0;9;-3\right\}\)thì \(A\inℤ\)

..... k cho mk nhoa :))))))))......

5 tháng 1 2020

Giải bài tập Toán 11 | Giải Toán lớp 11

16 tháng 5 2017

Nếu n = 14 thì A = 6/11

Nếu n = 5 thì A = 6/2

Nếu n = 3 thì A =6/1

12 tháng 4 2020

- Ta có: \(A=\frac{n+1}{n-3}\)

- Để \(A\inℤ\)\(\Leftrightarrow\)\(n+1⋮n-3\)

- Ta lại có: \(n+1=\left(n-3\right)+4\)

- Để \(n+1⋮n-3\)\(\Leftrightarrow\)\(\left(n-3\right)+4⋮n-3\)mà  \(n-3⋮n-3\)

\(\Rightarrow\)\(4⋮n-3\)\(\Rightarrow n-3\inƯ\left(4\right)\in\left\{\pm1;\pm2;\pm4\right\}\)

- Ta có bảng giá trị:

\(n-3\)\(-1\)\(1\)\(-2\)\(2\)\(-4\)\(4\)
\(n\)\(2\)\(4\)\(1\)\(5\)\(-1\)\(7\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\)

13 tháng 4 2020

Cảm ơn bạn

6 tháng 4 2019

Gọi ƯCLN(6n+5;3n+2) là d

Ta có:\(6n+5⋮d\)

\(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\Rightarrow6n+5-6n+4⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\RightarrowƯCLN\left(6n+5;3n+2\right)=1\left(n\in N\right)\)

\(\Rightarrow P\)là phân số tối giản

Ta có:\(p=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=\frac{2.\left(3n+2\right)+1}{3n+2}=2+\frac{1}{3n+2}\)

Để P có giá trị lớn nhất

\(\Rightarrow\frac{1}{3n+2}\)có giá trị lớn nhất

\(\frac{1}{3n+2}\ge1\)

Dấu\("="\)xảy ra khi

\(\frac{1}{3n+2}=1\Rightarrow3n+2=1\Rightarrow3n=-1\Rightarrow n=\frac{-1}{3}\)

\(\Rightarrow\)Giá trị lớn nhất của \(P=2+1=3\)khi\(n=\frac{-1}{3}\)

6 tháng 4 2019

\(a,\)Gọi d là ƯCLN\((6n+5,3n+2)\)\((ĐK:d\inℕ^∗)\)

Ta có : \(d\inƯC(6n+5,3n+2)\)nên :

\((6n+3)⋮d\) và \((3n+2)⋮d\)

\(\Rightarrow\left[2(3n+2)-(6n+3)\right]⋮d\)

\(\Rightarrow\left[(6n+4)-(6n+3)\right]⋮d\)

\(\Rightarrow1⋮d\)

Mà \(d\inℕ^∗\)nên d = 1 . Vậy phân số \(P=\frac{6n+5}{3n+2}\)là phân số tối giản

b, Tự làm

11 tháng 2 2018

a) Để \(A\) là phân số thì \(\left(n-7\right)\ne0\)\(\Rightarrow\)\(n\ne7\)

b) Với \(n=20\) thì :

\(A=\frac{8}{20-7}=\frac{8}{13}\)

Với \(n=3\) thì :

\(A=\frac{8}{3-7}=\frac{8}{-4}=-2\)

Với \(n=7\) thì :

\(A=\frac{8}{7-7}=\frac{8}{0}\) biếu thức \(A\) không xác định được 
 

11 tháng 2 2018

a, ĐK: \(n-7\ne0\Leftrightarrow n\ne7\)

b, +) n = 20 thì \(A=\frac{8}{20-7}=\frac{8}{13}\)

+) n = 3 thì \(A=\frac{8}{3-7}=\frac{8}{-4}=-2\)

+) n = 7 thì \(A=\frac{8}{7-7}=....\)

DD
18 tháng 6 2021

a) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\inℕ\)mà \(n\inℕ\)

suy ra \(4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{11;17;187\right\}\)(vì \(4n+3\ge3\)

\(\Rightarrow n\in\left\{2;46\right\}\).

DD
18 tháng 6 2021

b) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)rút gọn được khi \(\frac{187}{4n+3}\)rút gọn được. 

Ta có: \(187=11.17\)suy ra \(\orbr{\begin{cases}\left(4n+3\right)⋮11\\\left(4n+3\right)⋮17\end{cases}}\)

\(4n+3=11k\Leftrightarrow n=\frac{11k-3}{4}\)

\(150< n< 170\Rightarrow150< \frac{11k-3}{4}< 170\Rightarrow55\le k\le62\)

ta có các giá trị của \(n\)thỏa mãn là: \(156,167\).

\(4n+3=17k\)xét tương tự, thu được các giá trị \(n\)thỏa mãn là: \(165\)

Vậy các giá trị của \(n\)thỏa mãn là: \(156,165,167\).