Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì -3; n- 1 nên M là phân số nếu n – 1 khác 0 => n khác 1
b) Với n = 3 => M = − 3 3 − 1 = − 3 2
Với n = 5 => M = − 3 5 − 1 = − 3 4 và n = -4 => M = − 3 − 4 − 1 = − 3 − 5
\(a,\) \(M\) là phân số khi \(M\) \(\ne0\) \(\Rightarrow\dfrac{-3}{n-1}\ne0\Leftrightarrow n-1\ne0\Leftrightarrow n\ne1\)
\(b,\) Thay \(n=3,n=5,n=-4\) Vào \(M\) ta có :
\(M=\dfrac{-3}{3-1}=\dfrac{-3}{2}\)
\(M=\dfrac{-3}{5-1}=\dfrac{-3}{4}\)
\(M=\dfrac{-3}{-4-1}=\dfrac{3}{5}\)
\(a.\)
\(n-3\ne0\)
\(\Leftrightarrow n\ne3\)
\(b.\)
\(B\left(0\right)=\dfrac{-4}{3}\)
\(B\left(10\right)=\dfrac{4}{10-3}=\dfrac{4}{7}\)
\(B\left(-2\right)=\dfrac{4}{-2-3}=-\dfrac{4}{5}\)
Giải thích các bước giải:
a) Để B là phân số thì số nguyên n phải khác 0 và không thuộc Ư(4)
b)Nếu n=1 thì B=4/1-3=-2
Nếu n=2 thì B=4/2-3=-4
Nếu n=-3 thì B=4/-3-3=-2/3
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)