Cho n điểm phân biệt (n ≥ 2; n ∈ N) trong đó không có ba điểm nào thẳng hàng. Vẽ các đoạn thẳng nối hai trong n điểm đó. Có tất cả 28 đoạn thẳng. Hãy tìm n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có qua 2 điểm ta vẽ được 1 đường thẳng
3điểm ta vẽ được 2đương thẳng
n điểm ta vẽ được n(n-1):2 đường thẳng

- Nếu trong n điểm không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là \(\dfrac{n\left(n-1\right)}{2}\) đường.
- Số đường thẳng bị giảm nếu n điểm trong đó không có 3 điểm nào thẳng hàng trở thành n điểm thẳng hàng là: \(\dfrac{n\left(n-1\right)}{2}-1\) đường.
- Số đường thẳng tạo bởi 100 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng là: \(\dfrac{100.99}{2}=4950\) đường.
- Theo đề bài ta có: \(4950-\left(\dfrac{n\left(n-1\right)}{2}-1\right)=4915\)
\(\Leftrightarrow n\left(n-1\right)=72\)
\(\Leftrightarrow n^2-n-72=0\)
Giải phương trình trên ta được \(n=9\left(n\right)\) hay \(n=-8\) (loại)
Vậy n=9.

Tam giác cần lập thuộc hai loại
Loại 1: Tam giác có một đỉnh thuộc d1 và hai đỉnh thuộc d2. Loại này có tam giác.
Loại 2: Tam giác có một đỉnh thuộc d2 và hai đỉnh thuộc d1. Loại này có tam giác.
Theo bài ra ta có:
Chọn A.

Tam giác cần lập thuộc hai loại
Loại 1: Tam giác có một đỉnh thuộc d 1 và hai đỉnh thuộc d 2 .
Loại này có C 10 1 . C n 2 tam giác.
Loại 2: Tam giác có một đỉnh thuộc d 2 và hai đỉnh thuộc d 1 .
Loại này có C 10 2 . C n 1 tam giác.
Theo bài ra ta có: C 10 1 . C n 2 + C 10 2 . C n 1 = 2800
⇔ 10 n ( n − 1 ) 2 + 45 n = 2800 ⇔ n 2 + 8 n − 560 = 0 ⇔ n = 20
Chọn đáp án D

Gọi n điểm đã cho là: \(A_1;A_2;A_3;...;A_n\); n\(\ge\)2.
Vì không có 3 điểm nào thẳng hàng nên :
+) Nối \(A_1\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.
+) Nối \(A_2\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.
+) Nối \(A_3\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.
...
+) Nối \(A_3\) với ( n - 1) điểm còn lại ta có: ( n - 1) đường thẳng.
Như chúng ta có: n ( n - 1) đường thẳng
Tuy nhiên mỗi đường thẳng được tính 2 lần ( VD như nối \(A_1\)với \(A_2\)ta có đường thẳng \(A_1\)\(A_2\); còn nối \(A_2\)với \(A_1\)ta có đường thẳng \(A_2\)\(A_1\); và 2 đường thẳng \(A_1\)\(A_2\); \(A_2\)\(A_1\) trùng nhau )
=> Do đó số đường thẳng phân biệt là: n ( n - 1) : 2.

Ta thấy: Trong n điểm phân biệt cho trước, cứ qua 1 điểm ta vẽ được n - 1 đường thẳng. Vậy qua n điểm ta vẽ được n(n - 1) đoạn thẳng.
Nhưng nếu tính vậy thì mỗi đường thẳng sẽ bị tính đi tính lại 2 lần
Vậy số đoạn thẳng phân biệt được tạo ra từ n điểm phân biệt trên là: \(\frac{n\left(n-1\right)}{2}\)(đường thẳng)
Đáp án là C
Số đoạn thẳng tạo thành từ n điểm phân biệt trong đó không có ba điểm nào thẳng hàng là: n(n - 1)/2 (n ≥ 2; n ∈ N)
Theo đề bài có 28 đoạn thẳng được tạo thành nên ta có: n(n - 1)/2 = 28 ⇒ n(n - 1) = 56 = 8.7
Nhận thấy (n - 1) và n là hai số tự nhiên liên tiếp, suy ra n = 8.