K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

Goi tong tren la A

Ta co: A = 1/2^2 + 1/3^2 + 1/4^2 +.....+1/n^2

A= 1/2.2 + 1/3.3 + 1/4.4 + ......+ 1/n.n

A < 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +.....+ 1/(n-1)n

A< 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/n-1 - 1/n

A< 1 - 1/n < 1

=> A < 1 ( dpcm)

18 tháng 3 2016

Khó quá à , Phuong giỏi thiệt đó nha!!!

Ta đặt:A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...\frac{1}{n^2}\)

Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

     \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

....

     \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

=> A < \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{\left(n-1\right)n}\)

=> A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

=> A < \(1-\frac{1}{n}< 1\)(ĐPCM )

Vậy A < 1

Chững minh sao bạn !!!!!!!!!!!

1 tháng 7 2015

\(P=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}+\frac{1}{2n+3}\)

\(P=1-\frac{1}{2n+3}\)\(<1\)

Vậy \(P<1\)

2 tháng 6 2017

a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

 \(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )

\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)

Vậy \(N< \frac{1}{4}\)

b)  \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)

\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)

\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)

Vậy \(P< 1\)

2 tháng 6 2017

P<1 nha bn k nha

 Chứng minh quy nạp 

1/(n + 1) + 1/(n + 2) + ... + 1/(2n - 2) + 1/(2n - 1) + 1/(2n) > 13/24 (n ∈ N*) 

Với n = 1, ta có : 1/2 + 1/3 + ... + 1/2 > 13/24 (đúng) 

Giả sử bất đẳng thức đúng với n = k 

Nghĩa là : 1/(k + 1) + 1/(k + 2) + ... + 1/(2k - 2) + 1/(2k - 1) + 1/(2k) > 13/24 (1) 

Ta cần chứng minh bất đẳng thức đúng với n = k + 1 

Nghĩa là : 1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 (2) 

<=> [1/(k + 1) + 1/(k + 2) + 1/(k + 3) + ... + 1/(2k)] + 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 13/24 

Ta chứng minh : 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 0 (3) 

<=> [2(k + 1) + (2k + 1) - 2(2k + 1)] / [2(2k + 1)(k + 1)] > 0 

<=>1 / [2(2k + 1)(k + 1)] > 0 (4) 

Vì k ∈ N* => [2(2k + 1)(k + 1)] > 0 => (4) đúng => (3) đúng 

Cộng (1) và (3) được : 

1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 

mình lớp 5 mong bạn thông cảm

1 tháng 2 2019

no be hon 3/4 ma dumbass