K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

a, \(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

Vậy ...

b, \(a^2b+b^2a=ab\left(a+b\right)\)

Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)

Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)

Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)

Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)

c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

20 tháng 11 2019

Các cụ cho con bỏ câu này

20 tháng 11 2019

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

9 tháng 2 2020

giúp mình với

9 tháng 2 2020

\(x^n-x=x\left(x^{n-1}-1\right)\text{ Ta có:}0< x< 1\Rightarrow0< x^{n-1}< 1\Rightarrow x^{n-1}-1< 0\)

\(\Rightarrow x\left(x^{n-1}-1\right)< 0\Rightarrow x^n< x\text{ Ta có điều phải chứng minh}\)

7 tháng 11 2015

A= n5 -n = n(n2+1)(n+1)(n-1) 

+Nếu n =5k  => A chia hết cho 5

+ n =5k+1 =>  n-1 = 5k+1 -1 =5k chia hết cho 5 =>A chia heét cho 5

+ n= 5k+2 => n2+1 =(5k+2)2+1 = 25k2 +20k +4+1 =5(5k2+4k+1) chia hết cho 5 => A chia hết cho 5

+ n= 5k+3  => n2 +1 = tương tự chia hết cho 5 => A chia hết cho 5

+ n =5k+4 => n+1 = 5k+4+1 =5(k+1) chia hết cho 5 => A chia hêts cho 5

Vậy A= n5 -n  chia hết cho 5 với mọi n thuộc N

 

 

26 tháng 3 2022

A= n5 -n = n(n2+1)(n+1)(n-1)

+Nếu n =5k  => A chia hết cho 5

+ n =5k+1 =>  n-1 = 5k+1 -1 =5k chia hết cho 5 =>A chia heét cho 5

+ n= 5k+2 => n2+1 =(5k+2)2+1 = 25k2 +20k +4+1 =5(5k2+4k+1) chia hết cho 5 => A chia hết cho 5

+ n= 5k+3  => n2 +1 = tương tự chia hết cho 5 => A chia hết cho 5

+ n =5k+4 => n+1 = 5k+4+1 =5(k+1) chia hết cho 5 => A chia hêts cho 5

Vậy A= n5 -n  chia hết cho 5 với mọi n thuộc N