Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia su x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\) (a,b \(\in\)Z ; m>0) va x<y
Hay chung to rang z = \(\dfrac{2a+1}{2m}\) thi ta co x<z<y
Ta co : x<y =>\(\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\)
\(x=\dfrac{a}{m}=\dfrac{2a}{2m}\)
\(y=\dfrac{b}{m}=\dfrac{2b}{2m}\)
\(z=\dfrac{2a+1}{2m}\)
do 2a < 2a+1 => \(\dfrac{2a}{2m}< \dfrac{2a+1}{2m}\)=> x<z (1)
a<b => a+1 \(\le\)b
\(\Rightarrow2a+2\le2b\)
\(\Rightarrow2a+1< 2b\)
\(\Rightarrow\dfrac{2a+1}{2m}< \dfrac{2b}{2m}\)
\(\Rightarrow z< y\) (2)
\(Tu\left(1\right)va\left(2\right)\)
\(\Rightarrow x< z< y\)
Gia su x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\) (a,b ∈∈Z ; m>0) va x<y
Giải
x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\)
mà x < y => a < b
=> \(x=\dfrac{2a}{2m};y=\dfrac{2b}{2m}\)
Ta có : a < b
=> a + a < a + a + 1
=> 2a < 2a + 1
=> \(\dfrac{2a}{2m}< \dfrac{2a+1}{2m}\) hay x < z (1)
=> a + a + 1 < b + b
=> 2a+ 1 < 2b
=> \(\dfrac{2a+1}{2m}< \dfrac{2b}{2m}\) hay z < y (2)
Từ (1) và (2) => x < y <z
Ta co : x<y =>\(\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\)
\(x=\dfrac{a}{m}=\dfrac{2a}{2m}\)
\(y=\dfrac{b}{m}=\dfrac{2b}{2m}\)
\(z=\dfrac{2a+1}{2m}\)
do 2a < 2a+1 => \(\dfrac{2a}{2m}< \dfrac{2a+1}{2m}\)=> x<z (1)
a<b => a+1 \(\le\)b
\(\Rightarrow2a+2\le2b\)
\(\Rightarrow2a+1< 2b\)
\(\Rightarrow\dfrac{2a+1}{2m}< \dfrac{2b}{2m}\)
\(\Rightarrow z< y\) (2)
\(Tu\left(1\right)va\left(2\right)\)
\(\Rightarrow x< z< y\)
Gia su x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\) (a,b ∈∈Z ; m>0) va x<y
Hay chung to rang z = \(\dfrac{2a+1}{2m}\) thi ta co x<z<y
Giải
x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\)
mà x < y => a < b
=> \(x=\dfrac{2a}{2m};y=\dfrac{2b}{2m}\)
Ta có : a < b
=> a + a < a + a + 1
=> 2a < 2a + 1
=> \(\dfrac{2a}{2m}< \dfrac{2a+1}{2m}\) hay x < z (1)
Ta có : a < b
=> a + a + 1 < b + b
=> 2a+ 1 < 2b
=> \(\dfrac{2a+1}{2m}< \dfrac{2b}{2m}\) hay z < y (2)
Từ (1) và (2) => x < y <z