Cho hình bình hành ABCD. Lấy các điểm E thuộc AB, F thuộc CD sao cho AE = CF; lấy các điểm G thuộc BC, H thuộc AD sao cho BG = DH. Cm EGFH là 1 hình bình hành và các đường thẳng AC, BD, EF, GH đồng quy.
(Mình đang cần gấp các bạn giúp mình nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Ta có: AE+EB=AB
FC+FD=CD
mà AB=CD
và AE=FC
nên EB=FD
Xét tứ giác EBFD có
EB//FD
EB=FD
DO đó: EBFD là hình bình hành
Suy ra: DE=BF
Ta có: AE+EB=AB
CF+FD=CD
mà AB=CD
và AE=CF
nên EB=FD
Ta có: AH+HD=AD
CG+BG=CB
mà AD=CB
và HD=BG
nên AH=CG
Xét ΔAHE và ΔCGF có
AH=CG
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔAHE=ΔCGF
Suy ra: HE=GF
Xét ΔEBG và ΔFDH có
EB=FD
\(\widehat{B}=\widehat{D}\)
BG=DH
Do đó: ΔEBG=ΔFDH
Suy ra: EG=FH
Xét tứ giác EHFG có
EG=FH
EH=FG
Do đó: EHFG là hình bình hành
Xét tứ giác AECF có
AE//CF
AE=CF
=>AECF là hình bình hành
=>AC cắt EF tại trung điểm của mỗi đườg(1)
Xét tứ giác BGDH có
BG//DH
BG=DH
=>BGDH là hình bình hành
=>BD cắt GH tại trung điểm của mỗi đường(2)
ABCD là hìnhbình hành
nên AC cắt BD tại trung điểm của mỗi đường(3)
Từ (1), (2) , (3) suy ra AC,BD,GH,EF đồng quy tại trung điểm của mỗi đường
=>GH cắt EF tại trung điểm của mỗi đường
Xét tứ giác EHFG có
GH cắt EF tại trung điểm của mỗi đường
=>EHFG là hình bình hành
Mình cảm ơn ạ