Cho tam giác MNP, MN=6cm, NP=8cm, MP=10cm. NH vuông góc với MP; kẻ D, E lần lượt là hình chiếu của H lên MN, NP
a) Chứng minh tam giác MNP vuông
b) Chứng minh ND.MN=NE.NP
c) Kẻ đường thẳng vuông góc với DE tại E cắt HP ở I. Chứng minh I trung điểm HP
d) (1) Kẻ NK, K trung điểm MP. Chứng minh NK vuông góc với DE
(2) Kẻ NK vuông góc DE. Chứng minh K trung điểm MP
* Câu a, b, c mình làm rồi nhờ mọi người giúp mình câu d. Mình cần gấp, xin cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E M N P K
áp dụng định lí pytago,ta có:
MN2+NP2=62+82=36+84=100(cm)
MP2=102=100(cm)
=> \(\Delta MNP\) vuông tại N
xét 2 tam giác vuông MNE và MKE có:
ME(chung)
\(\widehat{NME}=\widehat{KME}\)
=> \(\Delta MNE=\Delta MKE\left(CH-GN\right)\)
=>EN=NK
a) Xét \(\Delta\)MNP có MN2 + NP2 = MP2 (62 + 82 = 102)
Vậy \(\Delta\)MNP vuông tại N.
b) Xét hai \(\Delta\)MNE và \(\Delta\)MEK có : (1)
\(\widehat{N}=\widehat{K}=90^o\)
ME cạnh chung
\(\widehat{NME}=\widehat{EMK}\left(gt\right)\)
=> Hai tam giác (1) bằng nhau => EN = EK
Ta có: \(MP^2+NP^2=6^2+8^2=100\)
\(MN^2=10^2=100\)
Do đó: \(MP^2+NP^2=MN^2\)(=100)
Xét ΔMNP có \(MP^2+NP^2=MN^2\)(cmt)
nên ΔMNP vuông tại N(Định lí Pytago đảo)
ta có tam giác MNP có MN=MP = 8 cm => tam giác cân có đỉnh tại M
-> đường cao mh vuông góc với NP là đường trung tuyến -> HN= HP = 10/2 = 5 cm
xét tam giác MNH và tam giác MPH ta có
góc MHN = góc MHP ( = 90 độ )
HN=HP = 5cm
góc MNH = góc MPH ( tam giác MNP cân tại M )
=> tam giác MNH = tam giác MPH ( g.c.g )
áp dụng định lí pytago ta có mh = \(\sqrt{8^2-5^2}\)
-> mh = \(\sqrt{39}\)
tiếp theo là cách giải của toán 9
ta có MHP vuông tại H và có HI là đường cao
-> HM*HP = PM*IH
-> IH= ( HM*HP)/PM= \(\frac{\left(\sqrt{39}+5\right)}{8}\)
vì tam giác MHN = tam giác MHP
-> HI = KI = \(\frac{\left(\sqrt{39}+5\right)}{8}\)
a: Xét ΔMNP có \(NP^2=MP^2+MN^2\)
nên ΔMNP vuông tại M
b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
\(\widehat{MND}=\widehat{END}\)
DO đó: ΔNMD=ΔNED
Suy ra: DM=DE
a)Xét tam giác MNP vuông tại M.Theo định lí pytago:
MP2=NP2−MN2=102−82=36
=> MP=6(cm)
b) Ta có:
sinN=MPNP=610=35
cosN=MNNP=810=45
tgN=MPMN=68=34
cotgN=MNMP=86=43
=>sinP=cosN=45;cosP=sinN=35;tgP=cotgN=43;cotgP=tgN=34
Xét \(\Delta MNP\left(\widehat{A}=90^0\right)\)có:
\(PM^2=PN^2+NM^2\)( định lý py-ta-go )
\(\Leftrightarrow8^2=10^2+MN^2\)
Đề sai, bởi vì không thể cạnh huyền lại bé hơn cạnh góc vuông được??