Cho ΔMNP có: Góc P = 40 độ ; góc M = \(\dfrac{1}{2}\) góc N . Tính góc M ; góc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo định lý về tổng 3 góc trong tam giác:
$\widehat{M}+\widehat{N}=180^0-\widehat{P}=180^0-40^0=140^0$
Thay $\widehat{M}=\frac{1}{2}\widehat{N}$ vô thì:
$\frac{1}{2}\widehat{N}+\widehat{N}=140^0$
$\frac{3}{2}\widehat{N}=140^0$
$\Rightarrow \widehat{N}=\frac{280^0}{3}$
$\widehat{M}=\frac{1}{2}\widehat{N}=\frac{140^0}{3}$
Tam giác MNP có:
NP2 = MN2 + MP2 (52 = 32 + 42)
=> tam giác MNP vuông tại M (định lý Pytago đảo) có MI là đường trung tuyến.
=> MI = NP/2
mà IP = NP/2 (I là trung điểm của NP)
=> MI = IP
=> Tam giác IMP cân tại I
=> IMP = IPM
Tam giác MNP vuông tại M có:
MNP + MPN = 900
500 + MPN = 900
MPN = 900 - 500
MPN = 400
Tam giác IMP có:
MIP + IMP + IPM = 1800
MIP + IPM + IPM = 1800
MIP + 2 . IPM = 1800
MIP + 2 . 400 = 1800
MIP + 800 = 1800
MIP = 1800 - 800
MIP = 1000
Cho ΔMNP, góc M =90 độ , MH⊥NP tại H
a) Chứng tỏ ΔHMN ∼ ΔHPM
b) Biết HN = 3cm , HC=6cm . Tính MN , MP
a,\(MH\perp NP=>\angle\left(MHN\right)=\angle\left(MHP\right)=90^O\)(1)
có \(\left\{{}\begin{matrix}\angle\left(HMN\right)+\angle\left(MNH\right)=90^o\\\angle\left(HPM\right)+\angle\left(MNH\right)=90^O\end{matrix}\right.\)
\(=>\angle\left(HMN\right)=\angle\left(HPM\right)\left(2\right)\)
(1)(2)\(=>\Delta HMN\sim\Delta HPM\left(g.g\right)\)
b, đề sai ko có điểm C
Cho ΔMNP, góc M =90 độ , MH⊥NP tại H
a) Chứng tỏ ΔHMN ∼ ΔHPM
b) Biết HN = 3cm , HC=6cm . Tính MN , MP
a) Xét ΔHMN vuông tại H và ΔHPM vuông tại H có
\(\widehat{HMN}=\widehat{HPM}\left(=90^0-\widehat{N}\right)\)
Do đó: ΔHMN\(\sim\)ΔHPM(g-g)
Bạn tham khảo link sau:
https://hoc24.vn/cau-hoi/cho-dmnp-co-goc-p-40-do-goc-m-dfrac12goc-n-tinh-goc-m-goc-n.3287413095068