Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4: Sửa đề: DA=DC
a: BA=BC
DA=DC
=>BD là trung trực của AC
b: góc A+góc C=360-120-80=160 độ
Xét ΔBAD và ΔBCD có
BA=BD
AD=CD
BD chung
=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=160/2=80 độ
3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được
a: góc A+góc C=180 độ
=>ABCD nội tiếp đường tròn đường kính BD
b:
Gọi O là trung điểm của BD
=>ABCD nội tiếp đường tròn (O)
Vì BD là đường kính của đường tròn ngoại tiếp tứ giác ABCD
nên BD>AC
c: AC=BD
=>AC là đường kính của (O)
Xét tứ giác ABCD có
AC cắt BD tại trung điểm của mỗi đường
AC=BD
=>ABCD là hình chữ nhật
Tứ giác ABCD có góc A= góc D = 90 độ nên ABCD là hình thang vuông. Từ B kẻ BH vuông góc với CD. Ta có BH= AD =3 cm.
Xét tam giác vuông BHC có góc C=40 độ nên tan 40 = BH/HC . suy ra HC = BH/tan40 = 3/ tan 40
Ta lại có AB= DH =4 cm nên CD = DH+HC 4+ 3/ tan 40
Vậy diện tích tứ giác ABCD = (AB+CD).BH/2
kẻ đường cao BH
xét tứ giác ABHD có góc A=góc D=góc H=90 độ
=> ABHD là hình chữ nhật
=> S ABHD=AB.AD=4.3=12 cm vuông
xét tam giác vuông BHC có tanC=BH/HC =>HC=BH/tanC=3/tan\(40^0\)=3.6 cm
=> S BHC=1/2.BH. HC=1/2.3.3,6=5,4 cm vuông
=> S ABCD= S ABHC+S BHC=12+5,4=17,4 cm vuông
Ta có : \(^{\widehat{C_1}+\widehat{C_2}=180^o}\)(hai góc kề bù)
Mà \(\widehat{C_2}=120^o\)(gt)
Suy ra : \(\widehat{C_1}=180^o-120^o=60^o\)
Lại có : \(\widehat{A}+\widehat{B}+\widehat{C_1}+\widehat{D}=360^o\) (tổng bốn góc trong 1 tứ giác)
Mà \(\widehat{A}=130^o;\widehat{B}=90^o;\widehat{C}=60^o\)
Nên : \(\widehat{D}=360^o-130^o-90^o-60^o=80^o\)
Ta có :
\(\widehat{BCD}+120^o=180^o\)( kề bù )
\(\widehat{BCD}=180^o-120^o\)
\(\widehat{BCD}=60^o\)
Tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(130^o+90^o+60^o+\widehat{D}=360^o\)
\(280^o+\widehat{D}=360^o\)
\(\widehat{D}=360^o-280^o\)
\(\widehat{D}=80^o\)