K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: D là trung điểm của AE

Xét ΔEAC có 

D là trung điểm của AE
I là trung điểm của CE

Do đó: DI là đường trung bình

=>DI//AC và DI=AC/2

Xét ΔEBC có 

F là trung điểm của BC

I là trung điểm của EC

Do đó: FI là đường trung bình

=>FI//EB và FI=EB/2

Ta có: FI=EB/2

DI=AC/2

mà EB=AC
nên IF=ID

hay ΔIFD cân tại I

=>\(\widehat{IFD}=\widehat{IDF}\)

mà \(\widehat{DFI}=\widehat{FDB}\)(FI//AB)

nên \(\widehat{FDI}=\widehat{FDB}\)

\(\Leftrightarrow\widehat{BDI}=2\cdot\widehat{IDF}\)

hay \(\widehat{BAC}=2\cdot\widehat{IDF}\)

Sửa đề: D là trung điểm của AE

Xét ΔEAC có 

D là trung điểm của AE
I là trung điểm của CE

Do đó: DI là đường trung bình

=>DI//AC và DI=AC/2

Xét ΔEBC có 

F là trung điểm của BC

I là trung điểm của EC

Do đó: FI là đường trung bình

=>FI//EB và FI=EB/2

Ta có: FI=EB/2

DI=AC/2

mà EB=AC
nên IF=ID

hay ΔIFD cân tại I

=>\(\widehat{IFD}=\widehat{IDF}\)

mà \(\widehat{DFI}=\widehat{FDB}\)(FI//AB)

nên \(\widehat{FDI}=\widehat{FDB}\)

\(\Leftrightarrow\widehat{BDI}=2\cdot\widehat{IDF}\)

hay \(\widehat{BAC}=2\cdot\widehat{IDF}\)

Sửa đề: D là trung điểm của AE

Xét ΔEAC có 

D là trung điểm của AE
I là trung điểm của CE

Do đó: DI là đường trung bình

=>DI//AC và DI=AC/2

Xét ΔEBC có 

F là trung điểm của BC

I là trung điểm của EC

Do đó: FI là đường trung bình

=>FI//EB và FI=EB/2

Ta có: FI=EB/2

DI=AC/2

mà EB=AC
nên IF=ID

hay ΔIFD cân tại I

=>\(\widehat{IFD}=\widehat{IDF}\)

mà \(\widehat{DFI}=\widehat{FDB}\)(FI//AB)

nên \(\widehat{FDI}=\widehat{FDB}\)

\(\Leftrightarrow\widehat{BDI}=2\cdot\widehat{IDF}\)

hay \(\widehat{BAC}=2\cdot\widehat{IDF}\)

1 tháng 4 2019

giúp vs

1 tháng 4 2019

đợi đang suy nghĩ

24 tháng 2 2021

a) △ABM và △ECM có:

\(MB=MC\\ \widehat{AMB}=\widehat{CME}\\ AM=ME\)

\(\Rightarrow\text{△ABM = △ECM (c.g.c)}\)

b) \(\text{△ABM = △ECM}\\ \Rightarrow\widehat{ABM}=\widehat{ECM}\)

Mà 2 góc ở vị trí so le trong

\(\Rightarrow\) AB // CE (dấu hiệu nhận biết)

c) \(\text{△ACM và △EBM có:}\\ AM=EM\\ \widehat{AMC}=\widehat{BME}\\ CM=BM\\ \Rightarrow\text{△ACM = △EBM (c.g.c)}\\ \Rightarrow\widehat{CAM}=\widehat{BEM}\\ \text{△AIM và △EKM có:}\\ AI=EK\\ \widehat{IAM}=\widehat{KEM}\\ AM=EM\\ \Rightarrow\text{△AIM = △EKM (c.g.c)}\\ \Rightarrow MI=MK\)

a) Xét ΔABM và ΔECM có 

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔABM=ΔECM(c-g-c)

1 tháng 4 2019

A B C E H

Ta có AB>AC(gt)

=>HB>HC(quan hệ giữa đường xiên và hình chiếu)

=>BE>CE(quan hệ giữa đường xiên và hình chiếu)

Bài 1. Cho tam giác ABC có AB = AC và đường phân giác AD.a, Chứng minh AD vuông góc với BC.b, Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằngDA là tia phân giác của góc EDF.Bài 2. Cho tam giác ABC (AB = AC). BD và CE là hai phân giác của tam giác.a) Chứng minh: BD = CE.b) Xác định dạng của ADE.c) Chứng minh: DE // BC.Bài 3. Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho...
Đọc tiếp

Bài 1. Cho tam giác ABC có AB = AC và đường phân giác AD.
a, Chứng minh AD vuông góc với BC.
b, Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng
DA là tia phân giác của góc EDF.
Bài 2. Cho tam giác ABC (AB = AC). BD và CE là hai phân giác của tam giác.
a) Chứng minh: BD = CE.
b) Xác định dạng của ADE.
c) Chứng minh: DE // BC.
Bài 3. Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trên
tia BA lấy điểm F sao cho BF = BC. Kẻ BD là phân giác của góc ABC (D  AC). Chứng
minh rằng:
a) DE  BC ; AE  BD. b) AD < DC.
c) ADF = EDC. d) E, D, F thẳng hàng.
Bài 4. Cho tam giác ABC có AB < AC, phân giác AM. Trên tia AC lấy điểm N sao cho
AN = AB. Gọi K là giao điểm của các đường thẳng AB và MN. Chứng minh rằng:
a) MB = MN. b) MBK = MNC.
c) AM  KC và BN // KC. d) AC - AB > MC - MB.
Bài 5. Cho  ABC cân tại A có góc A nhọn, hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh AE = AD
b) Chứng minh AH là phân giác của góc BAC và AH là trung trực của ED.
c) So sánh HE và HC.
d) Qua E kẻ EF // BD (F AC), tia phân giác góc ACE cắt ED tại I. Tính góc EFI.

1

Bài 1: 

a: Ta có ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh đáy BC

nên AD⊥BC

b: Ta có: AE+BE=AB

AF+FC=AC

mà BE=CF

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔAED=ΔAFD

Suy ra: \(\widehat{EDA}=\widehat{FDA}\)

hay DA là tia phân giác của \(\widehat{EDF}\)