Cho hình vẽ biết a // b
Góc A1= 30° ; góc B1 = 60°
a) Tính góc AOB
b) Cho biết quan hệ giữa 2 đường thẳng OB và OA
Giúp nha mk tick cho ai trả lời nhanh và đúng nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A 2 ^ = 150 ° , B 2 ^ = 105 ° => a // b
Mà a ⊥ c => bc => C 1 ^ = C 2 ^ = 90°
a) Ta có: A 1 ^ + A 2 ^ + A 3 ^ = 310 ° mà A 2 ^ + A 3 ^ = 180 ° ( hai góc kề bù)
do đó A 1 ^ = 310 ° − 180 ° = 130 ° .
b) Ta có: B 2 ^ = A 2 ^ (hai góc đồng vị); B 2 ^ = B 4 ^ (hai góc đối đỉnh).
Suy ra A 2 ^ = B 4 ^
A 1 ^ và A 2 ^ là hai góc kề bù nên A 1 ^ + A 2 ^ = 180 °
⇒ A 2 ^ = 180 ° − A 1 ^ = 180 ° − 50 ° = 130 ° B 3 ^ = B 1 ^ = A 3 ^ = A 1 ^ = 50 ° B 4 ^ = B 2 ^ = A 4 ^ = A 2 ^ = 130 ° .
Do a // b nên ta có:
\(\widehat{A_1}=\widehat{A_3}=54^0(đối đỉnh)\)
\(\widehat{A_3}+\widehat{A_2}=180^0\)
\(\Rightarrow\)\(\widehat{A_2}=180^0-54^0=126^0\)
a)\(\widehat{B_2}=\widehat{A_3}=54^0(đồng vị)\)
b)\(\widehat{A_2}=\widehat{A_4}=126^0(đối đỉnh)\)
\(\Rightarrow\)\(\widehat{A_4}=\widehat{B_3}=126^0(đồng vị)\)
\(\widehat{A_1}<\widehat{B_3}(54^0<126^0)\)
c)\(\widehat{A_4}+\widehat{B_2}=126^0+54^0=180^0\)