. Cho hai đa thức: f(x) = x2 – 2x – 5x5 + 7x3 + 12;
g(x) = x3 – 4x4 + 7x2 + 8x – 9.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(f\left(x\right)=g\left(x\right)\cdot p\left(x\right)\)
=>\(p\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^5-3x^4+7x^3-9x^2+8x-2}{x^2-2x+a}\)
Để P(x) tồn tại với mọi x thì \(x^2-2x+a< >0\)(2) với mọi x
Giả sử \(x^2-2x+a=0\)(1)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot a=4-4a\)
Để phương trình (1)có nghiệm thì 4-4a>=0
=>a<=1
Do đó: Để bất phương trình (2) luôn đúng với mọi x thì a>1
Bài 3:
1:
AH=AO
=>H trùng với O
=>Tâm đường tròn ngoại tiếp ΔABC trùng với trực tâm của tam giác
=>ΔABC đều
=>\(\widehat{BAC}=60^0\)
\(\dfrac{f\left(x\right)}{2x+1}=\dfrac{\left(2x+1\right)\left(x^2-x+1\right)}{2x+1}=x^2-x+1\)
`a)f(x)+g(x)`
`=x^2+3x-5+x^2+2x+3`
`=(x^2+x^2)+(3x+2x)+(3-5)`
`=2x^2+5x-2`
`b)f(x)-g(x)`
`=x^2+3x-5-(x^2+2x+3)`
`=(x^2-x^2)+(3x-2x)-(3+5)`
`=x-8`
Ta có:
A(x) + B(x) = -2x3 + 9 - 6x + 7x4 - 2x2+ 5x2 + 9x - 3x4 + 7x3 - 12
= 4x4 + 5x3 + 3x2 + 3x - 3. Chọn B
a)P(x) = 7x3 - x2 + 5x - 2x3 +6 - 8x
=5x^3-x^2-3x+6
Q(x) = -2x + x3 - 4x2 + 3 - 5x2
=x^3-9x^2-2x+3
b)
P(x) - Q(x)=4^3+8x^2-x-3
P(x) + Q(x)=6^3-10x^2-5x+9
Chọn B
Ta có: B(x) = 6x4 - 7x3 + 6x2- 7x3 + 4x4 + 3 - 5x + 2x
= 10x4 - 14x3 + 6x2 - 3x + 3.
Ta có:
f(x) = -15x3 + 5x4 - 4x2 + 8x2 - 9x3 - x4 + 15 - 7x3
= (5x4 - x4) - (15x3 + 9x3 + 7x3) + (-4x2 + 8x2) + 15
= 4x4 - 31x3 + 4x2 + 15
Đề thiếu!
Em cần làm gì với hai đa thức này?