Cho f(x) là 1 đa thức bậc 4. Biết f(1)=f(-1); f(2)=f(-2). CMR: f(x)=f(-x) với \(\forall\)x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )
Ta có:
\(f\left(1\right)=a+b+c+d+e=0\) (1)
\(f\left(2\right)=16a+8b+4c+2d+e=0\) (2)
\(f\left(3\right)=81a+27b+9c+3d+e=0\) (3)
\(f\left(4\right)=256a+64b+16c+4d+e=6\) (4)
\(f\left(5\right)=625a+125b+25c+5d+e=72\) (5)
\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)
\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)
\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)
\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)
\(E=B-A=50a+12b+2c=0\)
\(F=C-B=110a+18b+2c=6\)
\(G=D-C=194a+24b+2c=66-6=60\)
Tiếp tục lấy H=F-E; K=G-F; M=H-K
Ta tìm được a
Thay vào tìm được b,c,d,e
1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e
có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n)
thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7
Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42
Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).
2. Thiếu dữ liệu
3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)
...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)
để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5
Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý
Giả sử đa thức thương có dạng là ax + b. Khi đó: f(x) = (x2+1)(ax+b) + 5x+4
Bạn lần lượt thay x = 1 và x = -1 vào đa thức trên thì ra hệ pt vs 2 ẩn a, b. cộng tương ứng từng vế của 2 hệ đó lại là tìm được a, b. thay a, b vào đa thức trên, khai triển ra rồi thay x = 2014 là ok
Do f(x) là đa thức bậc 4 nên f(x) có dạng sau
\(f\left(x\right)=ax^4+bx^3+cx^2+dx+e\)
Ta có :
\(f\left(1\right)=f\left(-1\right)\Leftrightarrow a+b+c+d+e=a-b+c-d+e\)
\(\Leftrightarrow b+d=-b-d\)
\(\Leftrightarrow b=-d\) (1)
\(f\left(2\right)=f\left(-2\right)\Leftrightarrow16a+8b+4c+2d+e=16a-8b+4c-2d+e\)
\(\Leftrightarrow8b+2d=-8b-2d\)
\(\Leftrightarrow4b=-d\) (2)
Từ (1) và (2) => b = d = 0
Do b,d là hệ số của các số mũ lẻ
mà b = d = 0 nên đa thức f(x) trở thành dạng như sau \(f\left(x\right)=ax^4+cx^2+e\)
Nhận thấy x4 và x2 là 2 số có bậc chẵn
nên với mọi x , f(x) = f(-x)
Giả sử : \(f\left(1\right)=1^4=1\)
\(f\left(-1\right)=\left(-1\right)^4=1\)( vì một số âm hoặc dương nếu có số mũ chẵn thì kết quả sẽ là 1 số dương)
Vì đa thức \(f\left(x\right)\)có bậc 4 ( bậc 4 là bậc chẵn nên mọi số âm hay dương mũ 4 đều có kết quả dương)
Vậy \(f\left(x\right)=f\left(-x\right)\forall x\)( vì đa thức trên có bậc 4 - bậc chẵn)
a) Gọi đa thức cần tìm là \(f\left(x\right)=ax+b\)
Do \(f\left(-1\right)=2\) nên thay \(x=-1\) ta có \(-a+b=2\), hay \(b=a+2\)
Do \(f\left(3\right)=-1\) nên thay \(x=3\) ta có \(3a+b=-1\), suy ra \(3a+a+2=-1\)
\(\Rightarrow4a=-3\Rightarrow a=-\dfrac{3}{4}\Rightarrow b=\dfrac{5}{4}\)
Vậy đa thức cần tìm là \(f\left(x\right)=-\dfrac{3}{4}x+\dfrac{5}{4}\)
b) Gọi đa thức cần tìm là \(g\left(x\right)=5x^2+bx+c\)
Do \(g\left(2\right)=5\) nên thay \(x=2\) ta có \(20+2b+c=5\Rightarrow2b+c=-15\)
\(\Rightarrow c=-15-2b\)
Do \(g\left(1\right)=-1\) nên thay \(x=1\) ta có \(5+b+c=-1\Rightarrow b+c=-6\)
\(\Rightarrow b-2b-15=-6\Rightarrow b=-9\Rightarrow c=3\)
Vậy đa thức cần tìm là \(g\left(x\right)=5x^2-9x+3\)
1) Gọi \(f\left(x\right)=3x^3+bx^2+cx+d\)
Ta có: \(f\left(1\right)=3+b+c+d=-1\Rightarrow b+c+d=-4\left(1\right)\)
Lại có: \(f\left(2\right)=24+4b+2c+d=2\Rightarrow4b+2c+d=-22\left(2\right)\)
Từ (1); (2) \(\Rightarrow3b+c=-18\)
Mặt khác: \(f\left(10\right)-f\left(-7\right)=3.1000+100b+10c+d+343-49b+7c-d\)
\(=3343+17.\left(3b+c\right)=3343-17.18=3037\)
Câu 2 tương tự
f(x)=a.x^2+bx+c, f(5)=f(-5) nên a.(5)^2+b.5+c=a.(-5)^2+b(-5)+c, rút gọn 2 vế suy ra 5b=-5b suy ra b=0
hay f(x)=a.x^2+c suy ra f(-x)=a.(-x)^2+c =a.x^2+c =f(x)
Đặt g(x) = f(x) – f(-x), thế thì g(x) là đa thức dạng: g(x) = ax^3 + bx^2 + cx + d. Mặt khác, ta có:
g(1) = f(1) – f(-1) = 0
g(-1) = f(-1) – f(1) = 0
g(2) = f(2) – f(-2) = 0
g(-2) = f(-2) – f(2) = 0
Như vậy g(x) là đa thức bậc không quá ba mà có bốn nghiệm khác nhau 1, -1, 2, -2 điều này là không thể. Vậy phải có a = 0; b = 0; c = 0; d = 0.
Hay f(x) = f(-x) với \(\forall\)x.
Bn chép mạng à