Cho hàm số y = f(x0= 4x^2 -9
a) Tính f(-2); f(1/4)
b) Tìm x để f(x)= -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
1,Thay x = 1 vào biểu thức ta có
f = 4 x 12 -5
f = -1
2, Đặt f(x) = -1, ta có:
4 x x2 - 5 = -1
4 x x2 = 4
x2 = 4 : 4
x2 = 1
x2=12
=> x = 1 hoặc = -1
Vậy để f(x)=1 thì x ϵ {-1;1}
\(a,f\left(-2\right)=\dfrac{3}{4}\left(-2\right)=-\dfrac{3}{2}\\ f\left(0\right)=\dfrac{3}{4}\cdot0=0\\ f\left(1\right)=\dfrac{3}{4}\cdot1=\dfrac{3}{4}\\ b,g\left(-2\right)=\dfrac{3}{4}\left(-2\right)+3=-\dfrac{3}{2}+3=\dfrac{3}{2}\\ g\left(0\right)=\dfrac{3}{4}\cdot0+3=3\\ g\left(1\right)=\dfrac{3}{4}\cdot1+3=\dfrac{15}{4}\)
Đặt
Suy ra g(x) xác định trên ( a ; b ) \ x 0 và
Mặt khác, f ( x ) = f ( x 0 ) + L ( x − x 0 ) + ( x − x 0 ) g ( x ) nên
Vậy hàm số y = f(x) liên tục tại
a, \(f\left(-2\right)=4.4-9=7\)
\(f\left(\dfrac{1}{4}\right)=\dfrac{4.1}{16}-9=\dfrac{1}{4}-9=\dfrac{-35}{4}\)
b, \(f\left(-1\right)=4x^2-8=0\Leftrightarrow x=\pm\sqrt{2}\)
.