K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

a,

Khi f(3)

=> 5 . 32 - 1

= 5 . 9 - 1

= 45 - 1

= 44

Khi f(-2)

=> 5 . ( -2 )2 - 1

= 5 . 4 - 1

= 20 - 1

= 19

b,

Khi f(x) = 79

=> 5x2 - 1 = 79

5x2 = 79 + 1

5x2 = 80

=> x2 = 80 : 5

x2 = 16

x2 = 42

=> x = 4

17 tháng 12 2016

a)\(f\left(3\right)=5\cdot3^2-1=5\cdot9-1=45-1=44\)

\(f\left(-2\right)=5\cdot\left(-2\right)^2-1=5\cdot4-1=20-1=19\)

b)\(f\left(x\right)=79\Leftrightarrow5x^2-1=79\)

\(\Leftrightarrow5x^2=80\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow x=\pm4\)

29 tháng 11 2021

\(f\left(2\right)=-5.2^2+5=-5.4+5=-15\)

\(f\left(1\right)=-5.1^2+5=-5.1+5=0\)

\(f\left(3\right)=-5.3^2+5=-5.9+5=-40\)

 

29 tháng 1 2017

+) Ta có :

Đề kiểm tra 15 phút Đại số 11 Chương 4 có đáp án (Đề 3)

- Vậy hàm số đã cho liên tục tại x = 2.

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:

a. Ta thấy: $(\sqrt{3}-1)(3-1)=2(\sqrt{3}-1)>0$ nên hàm số trên là hàm đồng biến trên $\mathbb{R}$

b.

$F(0)=2(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=2(\sqrt{3}-1)(\sqrt{3}+1)+1=2(3-1)+1=5$

$F[(\sqrt{3}+1)(3+1)]=F[4(\sqrt{3}+1)]=2(\sqrt{3}-1).4(\sqrt{3}+1)+1$

$=8(3-1)+1=17$

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$

b.

$F(0)=(\sqrt{3}-1).0+1=1$

$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$

25 tháng 7 2019

4 tháng 1 2022

Tham khảo

undefined

NV
4 tháng 1 2022

- Với \(m=1\) thỏa mãn

- Với \(m\ne1\):

\(f'\left(x\right)=3\left(m-1\right)x^2-10x+m+3\)

\(f\left(\left|x\right|\right)\) có số cực trị bằng \(2k+1\) với \(k\) là số cực trị dương của \(f\left(x\right)\) nên hàm có 3 cực trị khi \(f'\left(x\right)=0\) có đúng 1 nghiệm dương

TH1: \(f'\left(x\right)=0\) có 1 nghiệm bằng 0 \(\Rightarrow m=-3\Rightarrow f'\left(x\right)=-12x^2-10x\) ko có nghiệm dương (loại)

TH2: \(f'\left(x\right)=0\) ko có nghiệm bằng 0 nào \(\Rightarrow f'\left(x\right)=0\) khi và chỉ khi nó có 2 nghiệm trái dấu

\(\Rightarrow ac< 0\Leftrightarrow3\left(m-1\right)\left(m+3\right)< 0\)

\(\Rightarrow-3< m< 1\) 

Vậy \(-3< m\le1\)

a: \(f\left(-2\right)=\left(-2\right)^2+3\cdot\left(-2\right)-1\)

=4-6-1

=-3

\(f\left(-1\right)=\left(-1\right)^2+3\cdot\left(-1\right)-1\)

\(=1-3-1\)

=-3

7 tháng 10 2021

giúp em mng ơii

 

16 tháng 11 2021

\(m=3\Rightarrow y=f\left(x\right)=x+2\)

10 tháng 12 2019