K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Bạn vẽ hình mình HD nhé;

a) Pita go => BC =10

b) tg ABI và tg HBI có A=H =90; BI chung ; góc ABI = góc HBI

=>tg ABI =tg HBI ( cạnh huyền - góc nhọn )

c ) Theo b => BH =BA ; IA = IH => B;I nằm trên đương trung trực của AH hay BI là dg trung trực cảu AH.

d)theo b => IA = IH ; mà IH < IC ( tg HIC vuông tại H => IC là canh huyền )

=> IA < IC

d) I là trực tâm của tg BCD => BI là dg cao thứ 3 => BI _|_DC

28 tháng 6 2017

A B C H

Xét \(\Delta HAB\)và \(\Delta HCA\)có:

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\widehat{HAB}=\widehat{HCA}\)(cùng phụ với \(\widehat{HAC}\))

Suy ra \(\Delta HAB\)đồng dạng với \(\Delta HCA\)(g.g)

5 tháng 5 2016

Ta có:bc2=ac2+ab2

hay 10^2=8^2+6^2=>100=64+36

=>tam giác abc vuông tại a

A B C 8 6 10

Ta có: \(BC^2=10^2=100\)

          \(AC^2=8^2=64\)

         \(AB^2=6^2=36\)

Mà \(BC^2=AC^2+AB^2=64+36=100\left(Pytago\right)\)

=> Tam giác ABC vuôngtại A.

23 tháng 2 2018

giup minh cau b thoi ak

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuong tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: Xét ΔABI và ΔCBD có 

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{BAI}=\widehat{BCD}\)

Do đó: ΔABI\(\sim\)ΔCBD

10 tháng 5 2016

A C B E D M H

Cô hướng dẫn nhé :)

Ta thấy \(\Delta EAD=\Delta BAC\) (Hai cạnh góc vuông)

nên góc AED bằng góc ABC. Lại có góc ABC bằng góc CAM  (cùng phụ góc ACB)

Vậy góc AED bằng góc MAE hay tam giác EMA cân tại M hay EM = MA.

Ta thấy góc MAD phụ góc MAC, góc MDA phụ góc MEA nên góc MAD bằng góc MDA, hay tam giác AMD cân tại M, từ đó MA = MD.

Tóm lại EM = MA = MD nên M là trung điểm ED, hay AM là trung tuyến cảu tam giác ACE.

Chúc em thi tốt :))

10 tháng 5 2016

A B C D E M H

b: góc ADE+góc ABD=90 độ

góc AED=góc HEB=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADE=góc AED

=>AD=AE

a: BD là phân giác

=>DA/AB=DC/BC

=>DA*BC=DC*AB

=>DC*AB=AE*BC

DD
28 tháng 3 2021

a) Xét tam giác \(HBA\)và tam giác \(ABC\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{B}\)chung

Suy ra tam giác \(HBA\)đồng dạng với tam giác \(ABC\).

b) Xét tam giác \(ABC\)vuông tại \(A\):

\(BC^2=AB^2+AC^2\)(Định lí Pythagore)

\(\Leftrightarrow BC=\sqrt{AC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\).

\(AB^2=BH.BC\)(Hệ thức trong tam giác vuông)

\(\Leftrightarrow AH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)

\(BH=BC-BH=10-3,6=6,4\left(cm\right)\)

28 tháng 3 2021

(Bạn tự vẽ hình nhé).

a,Xét 2 tam giác vuông HBA và ABC có:

Góc H= góc A (=90 độ).

AB chung.

=> Tam giác HBA đồng dạng với tam giác ABC (ch-gv) (đpcm).

b, Áp dụng định lí Py-ta-go vào tam giác vuông ABC ta có:

BC2=  AB2 + AC2

Hay BC2 = 62 + 82 

               = 36 + 64

               = 100

=> BC= 10 (cm).

Ta có tam giác HBA đồng dạng với tam giác ABC (theo a)

=> BH/AB = AB/ BC = AH/AC

Hay BH/6 = 6/10 = AH/8

=> BH = 6.6/10 = 3,6 (cm).

      AH= 8.6/10 = 4,8 (cm).

Vậy BC=10 cm, BH=3,6 cm và AH=4,8 cm.