1. Cho (C): \(\left(x-3\right)^2+\left(y-3\right)^2=2\); d: x + y = 0. Hỏi phép tịnh tiến theo vecto nào sau đây biến d thành đường thẳng d' tiếp xúc vs (C)
2. Cho (C): \(x^2+\left(y-1\right)^2=m^2-2m\); (C'): \(x^2+y^2-2x+1+3m-2m^2=0\). Có bn giá trị nguyên của tham số m sao cho tồn tại phép tịnh tiến biến (C) thành (C')?
2.
Phương trình (C) là đường tròn khi và chỉ khi \(m^2-2m>0\Rightarrow\left[{}\begin{matrix}m>2\\m< 0\end{matrix}\right.\)
Khi đó (C) là đường tròn tâm \(A\left(0;1\right)\) bán kính \(R=\sqrt{m^2-2m}\)
Pt (C'): \(\left(x-1\right)^2+y^2=2m^2-3m\)
(C') là pt đường tròn khi và chỉ khi \(2m^2-3m>0\Rightarrow\left[{}\begin{matrix}m>\frac{3}{2}\\m< 0\end{matrix}\right.\)
Khi đó (C') là đường tròn tâm \(B\left(1;0\right)\) bán kính \(\sqrt{2m^2-3m}\)
Tồn tại một phép tịnh tiến biến (C) thành (C') khi và chỉ khi (C) và (C') có cùng bán kính
\(\Leftrightarrow\sqrt{m^2-2m}=\sqrt{2m^2-3m}\)
\(\Leftrightarrow m^2-2m=2m^2-3m\)
\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=1\left(l\right)\end{matrix}\right.\)
Vậy không tồn tại m thỏa mãn
1.
Phép tịnh tiến theo \(\overrightarrow{v}=\left(a;b\right)\) biến d thành d' cùng phương với d
\(\Rightarrow\) Phương trình d' có dạng: \(x+y+c=0\)
Đường tròn (C) tâm \(I\left(3;3\right)\) bán kính \(R=\sqrt{2}\)
Do d' tiếp xúc (C) \(\Leftrightarrow d\left(I;d'\right)=R\)
\(\Leftrightarrow\frac{\left|3+3+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+6\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}c=-8\\c=-4\end{matrix}\right.\)
Có 2 đường thẳng d' thỏa mãn: \(\left[{}\begin{matrix}x+y-8=0\\x+y-4=0\end{matrix}\right.\)
Ứng với đó ta có 2 dạng vecto \(\overrightarrow{v}=\left(a;8-a\right)\) hoặc \(\overrightarrow{v}=\left(a;4-a\right)\)