CÂU 5 ; cho hình ΔABC = 8cm . AC= 12cm . Trên cạnh AB lấy điểm D sao cho BD=2cm , trên cạnh AC lấy điểm E sao cho AE = 9 cm
A, tính tỉ số \(\dfrac{AE}{AD}\);\(\dfrac{AD}{AC}\)
B, chứng minh ΔADE đồng dạng ΔABC
C, đường phân giác của BAC cắt BC tại I , chứng minh : IB . AE = IC.AD
a) Ta có : AD + DB = AB ( vì D nằm trên cạnh AB)
=> AD + 2 = 8
=> AD = 6cm
Do đó : ADAB=68=34����=68=34
AEAC=912=34����=912=34
=> ADAB=AEAC=34����=����=34
b) Xét ΔADEΔ��� và ΔABCΔ��� có :
ˆA�^ chung
ADAB=AEAC����=����
=> ΔADE∽ΔABC(c.g.c)Δ���∽Δ���(�.�.�)
c) Vì IA�� là đường phân giác của ΔABCΔ��� nên
=> ABAC=IBIC=812=23����=����=812=23
Mà ADAB=AEAC����=���� (ΔADE∽ΔABC(cmt))(Δ���∽Δ���(���)) ⇒ABAC=ADAE=23⇒����=����=23
=>IBIC=ADAE⇒IB⋅AE=IC⋅AD(đpcm)����=����⇒��⋅��=��⋅��(đ���)