2a/b=b/2c=2c/a. CMR : a=1/2 ; b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần chứng minh tương đương với :
\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Áp dụng BĐT Cô-si cho 3 số dương ,ta có :
\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)
tương tự : \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\), \(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)
Cộng 3 BĐT trên theo vế, ta được :
\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)
Dấu "=" xảy ra khi a = b = c = 1
a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c²
=> c^4 = (a² + b² + 2ab)²
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3
vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b²
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b²
= 2a²(a + b)² + 2b²(a + b)² + 2a²b²
= 2a²b² + 2(a + b)²(a² + b²)
= 2a²b² + 2c²(a² +b²)
= 2a²b² + 2b²c² + 2c²a² (đpcm)
gt: a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c²
=> c^4 = (a² + b² + 2ab)²
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3
vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b²
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b²
= 2a²(a + b)² + 2b²(a + b)² + 2a²b²
= 2a²b² + 2(a + b)²(a² + b²)
= 2a²b² + 2c²(a² +b²)
= 2a²b² + 2b²c² + 2c²a² (đpcm)
Từ \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)
Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :
\(\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\left(a+a+b+b+c\right)\ge\left(1+1+1+1+1\right)^2\)
\(\Rightarrow\frac{2}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{25}{2a+2b+c}\)
Tương tự ta có :
\(\frac{2}{b}+\frac{2}{c}+\frac{1}{a}\ge\frac{25}{2b+2c+a}\)
\(\frac{2}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{25}{2a+b+2c}\)
Cộng từng vế BĐT ta thu được :
\(\frac{5}{a}+\frac{5}{b}+\frac{5}{c}\ge25P\)
\(\Leftrightarrow P\le\frac{5\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{25}=1\)
Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=\frac{3}{5}\)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm