K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

2.                                   GIẢI

Ta có : \(\left(-2a^{ }\right)^3\).\(\left(3b^{ }\right)^2\)

Thay a=-1;b=-3 ta được:

\(\left[\left(-2\right).\left(-1\right)\right]^3\).\(\left[3.\left(-3\right)\right]^2\)=\(2^3.\left(-9\right)^2\)=\(8.81\)=\(648\)

1 tháng 2 2017

1.                                    GIẢI

Ta có : (x-1)(x+2)=0

=>\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0+1\\x=0-2\end{cases}}\)=>\(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy \(x\in\){-2;1}

25 tháng 12 2016

giúp mình với . mình đang cần gấp nhé!

6 tháng 11 2023

|2x - 1| + (y - 2)² ≤ 0 (1)

Do |2x - 1| ≥ 0 và (y - 2)²⁰²² ≥ 0 (với mọi x, y ∈ R)

(1) ⇒  |2x - 1| + (y - 2)²⁰²² = 0

⇒ |2x - 1| = 0 và (y - 2)²⁰²² = 0

*) |2x - 1| = 0

2x - 1 = 0

2x = 1

x = 1/2

*) (y - 2)²⁰²² = 0

y - 2 = 0

y = 2

⇒ B = 12x² + 4xy²

= 12.(1/2)² + 4.(1/2).2²

= 3 + 8

= 11

9 tháng 2 2016

1)   7-x3-x2-x=7-x(x2-x-1)          vì x(x2-x-1) phải bé hơn 7 nên Giá trị lớn nhất của biểu thức B là 7

2)    (x-2)(2x+14)=0        ta đc      x-2=0  và 2x+14=0

                                       *Xét trường hớp 1:      x-2=0   =>x=2

                                       *Xét trường hợp 2:     2x+14=0  =>2x=-14 =>x= -7

                                Vậy x={2;-7}

25 tháng 2 2022

a, \(P=\left(\frac{x^2+9}{x^2+5x}+\frac{x-1}{x}-\frac{x}{x+5}\right)\left(1+\frac{2}{x}\right)\)đk : x khác  0 ; -5 

\(=\left(\frac{x^2+9+x^2+4x-5-x^2}{x\left(x+5\right)}\right)\left(\frac{x+2}{x}\right)\)

\(=\frac{x^2+4x+4}{x\left(x+5\right)}\left(\frac{x+2}{x}\right)=\frac{\left(x+2\right)^3}{x^2\left(x+5\right)}\)

b, Ta có \(\left(x+2\right)\left(3x-2\right)=0\Leftrightarrow x=-2;x=\frac{2}{3}\)

Với x = -2 => P = 0 

Với x = 2/3 => \(P=\frac{\left(\frac{2}{3}+2\right)^3}{\frac{4}{9}\left(\frac{2}{3}+5\right)}=\frac{128}{17}\)

-mình nghĩ bạn nên đặt dấu chia giữa 2 đa thức kia thì kq sẽ đẹp hơn 

2 tháng 7 2023

\(-22x^3-\left(-21x^3+19x^2+23^0\right)-\left(-x^3-18x^2\right)+\left(x^2-23^1\right)\)

\(=-22x^3+21x^3-19x^2-1+x^3+18x^2+x^2-23\)

\(=\left(-22x^3+21x^3+x^3\right)+\left(-19x^2+18x^2+x^2\right)+\left(-1-23\right)\)

\(=0x^3+0x^2-24\)

\(=-24\)

Vậy biểu thức trên có giá trị không phụ thuộc vào biến.