CMR: nếu a+b<0 thì ít nhất một trong hai BĐT sau là sai
a2+3ab2>=0 ; b2+3a2b>=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử cả ba BĐT đều đúng, khi đó a(1−b)b(1−c)c(1−a)>164a(1−b)b(1−c)c(1−a)>164
Nhưng theo BĐT CauChy thì a(1−a)≤(a+1−a2)2=14a(1−a)≤(a+1−a2)2=14, tương tự ta có
a(1−b)b(1−c)c(1−a)≤164a(1−b)b(1−c)c(1−a)≤164, mâu thuẩn
Giả sử a(1-b),b(1-c),c(1-a)>1/4
=> a(1-b).b(1-c).c(1-a)>(1/4)3
=> a(1-a).b(1-b).c(1-c)>(1/4)^3
Ta có a(1-a)=1/4-(1/2-a)2<1/4
CMTT b(1-b), c(1-c) <1/4
=> a(1-b).b(1-c).c(1-a)<(1/4)3 trái với giả sử
=> 1 trong các BĐT sai
giả sử a(1-b),b(1-c),c(1-a) >1/4
=> a(1-a)b(b-1)c(c-1)>1/4^3
ma a(1-a)=a-a^2=1/4- (a-1/2)^2<=1/4
tuong tu....
=> a(1-a)b(b-1)c(c-1)=<1/4^3(trai voi gia su)
Vay trong 3 h a(1-b),b(1-c),c(1-a) co it nhat 1 so < 1/4
Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca
=> a + b + c = ab + bc + ca
<=> a + b + c - ab - bc - ca = 0
<=> a + b + c - ab - bc - ac + abc - 1 = 0
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0
<=> (b - 1)(-a + 1 -c + ac) = 0
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0
<=> (a - 1)(b - 1)(c - 1) = 0
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0
<=> a = 1 hoặc b = 1 hoặc c = 1