K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

\(a.\Leftrightarrow a\left(b+5\right)-7\left(b+5\right)+35=0\)

\(\Leftrightarrow\left(a-7\right)\left(b+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-7=0\\b+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=7\\b=-5\end{matrix}\right.\)

\(b\ge3\Rightarrow b=-5\left(loại\right)\)

Vậy a = 7 còn b bất kì thìab-7b+5a=0

\(b.\Leftrightarrow a\left(7-b\right)-2\left(7-b\right)=18-14\)

\(\Leftrightarrow\left(a-2\right)\left(7-b\right)=4\)

\(Mà\)\(4=1.4=4.1=2.2=\left(-2\right).\left(-2\right)=\left(-1\right).\left(-4\right)=\left(-4\right).\left(-1\right)\)

a-2 1 4 2 -2 -1 -4
7-b 4 1 2 -2 -4 -1
a 3 6 4 0 1 -2
b 3 6 5 9 11 8

\(Vậy\)\(\left(a,b\right)=\left(3,3\right)=\left(6,6\right)=\left(0,9\right)=\left(1,11\right)=\left(-2,8\right)\)

21 tháng 12 2023

Bài 1:

Thay \(x\) = 6y vào biểu thức ta có:

|6y| - |y| = 60

|5y| = 60

5.|y| = 60

   |y| = 60 : 5

   |y| = 12

   \(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)

Kết luận:

Các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-72; -12); (72; 12)

12 tháng 11 2023

Bài 1

a) (x + 3)(x + 2) = 0

x + 3 = 0 hoặc x + 2 = 0

*) x + 3 = 0

x = 0 - 3

x = -3 (nhận)

*) x + 2 = 0

x = 0 - 2

x = -2 (nhận)

Vậy x = -3; x = -2

b) (7 - x)³ = -8

(7 - x)³ = (-2)³

7 - x = -2

x = 7 + 2

x = 9 (nhận)

Vậy x = 9

12 tháng 11 2023

Thanks

 

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
$xy^2+2x-y^2=8$

$(xy^2-y^2)+(2x-2)=6$

$y^2(x-1)+2(x-1)=6$

$(y^2+2)(x-1)=6$

Vì $y^2+2\geq 0+2=2$ và $y^2+2, x-1$ là các số nguyên nên ta có bảng sau:

10 tháng 4 2018

 B1: n2 + 6n + 8 = n2 + 4n + 2n + 8 = n(n+4) + 2(n+4) = (n+2)(n+4)

Vì n+2 < n+4 => n + 2 = 1 => n = -1

=> A = 3 nguyên tố, thoả

B2: x + y + xy = 2

=> x(y+1) + (y+1) = 3

=> (x+1)(y+1) = 3

Ta có:

x+113-1-3
y+131-3-1
x02-2-4
y20-4-2

        Vậy (x,y) = .....................

B3: a : b = c dư r

=> 112 : b = 5 dư r

=> 112 : 5 = b dư r

=> 112 - r chia hết cho 5 và r < 5

=> r = 2 => b = 22

26 tháng 6 2023

6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2)  thuộc Z =>(2x-1),(3y+2) thuộc U(6)   xong giải ra bình thường nhé mấy câu sau tương tự 
 

26 tháng 6 2023

chị giải nốt cho em phần a với ạ

 

9 tháng 7 2021

    \(3a-b+ab=8\)

\(\Rightarrow\) \(a\left(b+3\right)-\left(b+3\right)=5\)

\(\Rightarrow\) \(\left(a-1\right)\left(b+3\right)=5=1.5=\left(-1\right).\left(-5\right)\) 

Lập bảng, ta tìm được a = 2, b = 2

9 tháng 7 2021

3a-b+ab=8

⇒a(3+b)-b=8

⇒a(3+b)-3-b+3=8

⇒a(3+b)-(3+b)=5

⇒(a-1)(3+b)=5

ta có bảng:

a-1-1-515 
3+b-5-151 
a0-426 
b-8-42-2 

Vậy (a,b)∈{(-1;-5);(-4;-4);(2;2);(6;-2)}

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

Lời giải:

Gọi $d$ là ƯCLN của $a$ và $b$. Khi đó $a=dx, b=dy$ với $x,y$ nguyên dương và nguyên tố cùng nhau

Ta có:

$d=15$

BCNN$(a,b)=dxy=2835$

$\Rightarrow xy=189$

Mà $x,y$ là 2 số nguyên dương nguyên tố cùng nhau nên $(x,y)=(1,189), (189,1), (27,7), (7,27)$

$\Rightarrow (a,b)=(15,2835), (2835, 15), (405,105), (105,405)$

Các cặp nguyên tố cùng nhau là c và d