Cho tam giác vuông ABC
b) Biết a = 25cm; b = 15cm. Tính c, \(b^,\), \(c^,\), h
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:
A H 2 = H B . H C
Suy ra:
Xét tam giác ABC vuông tại A áp dụng Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)
\(\Rightarrow\widehat{B}\approx36^o52'\)
\(\Rightarrow\widehat{C}=180^o-90^o-36^o52'\approx53^o7'\)
a: Xét ΔABC vuông tại A có AH là đường cao
nên AC^2=CH*CB
b: \(BC=25+36=61\left(cm\right)\)
\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)
=>A\(C=6\sqrt{61}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=40cm\\AC=8\sqrt{89}cm\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(\sin\widehat{C}=\dfrac{AH}{AC}=\dfrac{5}{\sqrt{89}}\)
\(\Leftrightarrow\widehat{C}\simeq32^0\)
hay \(\widehat{B}=58^0\)
a) \(AH^2=HB.HC=50.8=400\)
\(\Rightarrow AH=20\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)
mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)
\(\Rightarrow AB.AC=20.58=1160\)
Theo Pitago cho tam giác vuông ABC :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)
\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)
\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)
Chu vi Δ ABC :
\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)
Xét tg vuông ABC
\(c=\sqrt{a^2-b^2}=\sqrt{25^2-15^2}=\sqrt{400}=20cm\) (pitago)
\(b^2=b'.a\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow b'=\dfrac{b^2}{a}=\dfrac{15^2}{25}=9cm\)
\(c'=a-b'=25-9=16cm\)
\(h^2=b'.c'\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow h=\sqrt{b'.c'}=\sqrt{15.9}=12cm\)
Hệ thức lượng trong tam giác vuông :
\(a^2=b^2+c^2\Rightarrow c^2=a^2-b^2=25^2-15^2=400\Rightarrow c=20\left(cm\right)\)
\(b^2=a.b'\Rightarrow b'=b^2:a=15^2:25=9\left(cm\right)\)
\(c^2=a.c'\Rightarrow c'=c^2:a=25^2:25=25\left(cm\right)\)
\(h^2=b'.c'=9.25=225\Rightarrow h=15\left(cm\right)\)