Tìm số tự nhiên a, b biết: a - b = 4320 và BCNN ( a ; b ) = 360
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 60 chia hết cho 12 nên BCNN(12;60)=12 => BC(12;60)={60;120;180;240;300;360;420;480;540;....}
a) Giả sử A \(\le\)B
Đặt: A = 45 x A', B = 45. B' (A', B' \(\inℕ^∗\),\(ƯCLN\left(A',B'\right)=1\), A'\(\le\)B)
\(\Rightarrow\)45 x A' x 45 x B' = 24300
A' x B' = 24300 : 452 = 12
Ta có: 12 = 1 x 12 = 3 x 4
\(\Rightarrow\)Ta có các trường hợp:
- Nếu A' = 1, B' = 12 \(\Rightarrow\)A = 45; B = 360
- Nếu A' = 3, B' = 4 \(\Rightarrow\)A = 135, B = 180
a) Vì UCLN(a,b)=6 nên a=6m b=6n (với m,n thuộc N; UCLN(m,n)=1) (1)
suy ra a+b=6m+6n=6(m+n)=84
suy ra m+n=84:6=14 (2)
các cặp (m,n) thoả mãn là : (1;13) (13;1) (3;11) (11;3) (5;9) (9;5)
các cặp (a,b) thoả mãn là : (6;78) (78;6) (18;66) (66;18) (30; 54) (54;30)
Gọi hai số cần tìm là a;b
-Ta có:BCNN (a;b)=ab
=>ƯCLN(a;b)=ab;BCNN(a,b)=4320:360=12
-Gọi a=12m
b=12n(ƯCLN(m;n)=1
=>ab=12m.12n=4320
=>144mn=4320
=>mn=30
Ta tìm được (m;n)=(1;30) (2;15) (3;10) (5;6) (6;5) (10;3) (15;2) (30;1)
Lấy m;n nhân với 12,ta tim được (a;b)=(12;360) (14;180) (36;120) (60;72) (72;60) (120;36) (180;14) (360;12)
Vì ƯCLN (a,b).BCNN (a,b)=a.b nên ƯCLN (a,b) bằng:4320:360=12
= >ƯCLN (a,b)=12
+)Ta có ƯCLN (a,b)=12=>a chia hết cho 12,b chia hết cho 12
=> a=12m,b=12n và (m,n)=1
=> Có: (12m).(12n)=4320
144.mn=4320
mn=4320:144
mn=30
Vì (m,n)=1 nên ta tìm được (m,n)=(1;30) (30;1) (2;15) (15;2) (3;10) (10;3) (5;6) (6;5)
Ta lấy m,n nhân với 12 được:a,b=(12;360) (360;12) (24;180) (180;24) (36;120) (120;36) (60;72) (72;60)
bn vào xem cái này sẽ giúp đc bn
Câu hỏi của Nguyễn Hải Ngân - Toán lớp 6 - Học toán với OnlineMath
kb mk di
12 = 2 . 2 . 3
60 = 22 . 3 . 5
=> BC(12,60) = 22 . 3 . 5 = 60
Gọi 2 số cần tìm là a;b
- Ta có BCNN(a;b).ƯCLN(a;b) = ab
=> ƯCLN(a;b) = ab : BCNN(a;b) = 4320 : 360 = 12
- Gọi a = 12m
........b = 12n ( ƯCLN(m;n) = 1 )
=> ab = 12m . 12n = 4320
=> ........144mn......= 4320
=> .........mn...........= 30
Lập bảng giá trị ( nhớ loại bỏ nhưng cặp (m;n) không có ƯCLN = 1 )
Ta tìm được (m;n) = (1;30);(2;15);(3;10);(5;6);(6;5);(10;3);(15;2);(30 ;1)
Lấy m;n nhân với 12, ta tìm được (a;b) = (12;360);(24;180);(36;120);(60;72);(72;60);(120;36 );(180;24);(360;12)
gọi 2 số cần tìm là a ; b
ta có: BCNN (a,b) = ab
=> UCLN (a,b) = ab ; BCNN (a,b) = 4320 : 360 = 12
gọi a = 12m
b = 12n (ULCN (m,n) = 1
=> ab = 12m . 12n = 4320
=> 144m.n = 4320
=> mn = 30
ta tìm được (m,n) = (1;30) ; (2;15) ; (3;10) ; (5;6) ; (10;3) ; (15;2) ; (30;1)
lấy m,n nhân vs 12 ta tìm được (a;b) = (12;360) ; (14;180) ; (36;120) ; (60;72) ; (72;60) ; (120;36) ; (180;14) ; (360;12) .
t i c k nhoa!!!!!!!!!!!!!!!!!!!! ^0^
$a-b=4320$ chứng tỏ $a>4320$
Bội của $a$ cũng phải là số > 4320
Mà theo đề BCNN(a,b)=360< 4320 nên vô lý
Bạn xem lại đề.