Cho a >0; b>0 chứng minh rằng: (a+b) (1/a+1/b)> hoặc = 4
Giúp mình đi mình like cho pạn hoài luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chú ý m > 2 thì m > 0.
b) Chú ý a < 0 và b < 0 thì ab > 0. Khi đó a > b, nhân hai vế với 1 ab > 0 ta thu được 1 b > 1 a . Tương tự a > 0, b > 0, a > b ta được 1 a < 1 b .
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
a) We have :
a2 + b2 + c2 = ab + bc + ac
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
b) We have :
a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0
(a2 - 2a + 1) + (b2 + 2.2b + 4) + (4c2 - 4c + 1) = 0
(a - 1)2 + (b + 2)2 + (2c - 1)2 = 0
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}\)
Chọn C.
Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.
Cách giải:
a) \(A=x\left(x-\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
b) \(A=x\left(x-\dfrac{4}{9}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{9}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{9}>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x< 0\\x>\dfrac{4}{9}\end{matrix}\right.\)
c) \(A=x\left(x-\dfrac{4}{9}\right)< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{9}< 0\end{matrix}\right.\)( do \(x>x-\dfrac{4}{9}\))
\(\Leftrightarrow\dfrac{4}{9}>x>0\)
a) A=x.(x-4/9)=0
<=>X=0 và X=4/9
b). A=x.(x-4/9)>0
<=>X>0 và X>4/9
c). A=x.(x-4/9)<0
<=>X<0 và X<4/9
a) Ta có M < 1. Mà m > 0 nên m.m < m.1 hay m 2 < m.
b) Từ a > b > 0, ta suy ra được a 2 > ab > b 2 . Sử dụng tính chất bắc cầu và liên hệ giữa thứ tự với phép cộng ta có a 2 - b 2 > 0.
a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!
Ta có: \(A\left(2\right)=4a+2b+c\)
\(A\left(-1\right)=a-b+c\)
Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
Suy ra \(A\left(2\right)=-A\left(-1\right)\)
Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)
b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)
\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)
Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)
Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)
\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)
\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)
Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)
Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)
Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)
Đúng ko ta?
ôi dào !dễ ợt ! cô em mới cho học ngày hôm qua !k đi rùi em trình bày cho cách làm !
bài này có nhiều cách chứng minh
1) ta có (a - b)^2 ≥ 0 ,<=> a^2 + b^2 ≥ 2ab <=> a^2 + b^2 + 2ab ≥ 4ab
<=> (a + b)^2 ≥4ab , vì a , b > 0 nên a + b > 0
=> a + b/ab ≥ 4/ a + b <=> 1/a + 1/b ≥ 4/a + b (đpcm)
2) áp dụng BĐT Cô si cho hai số dương a và b , ta có
a + b ≥ 2 √ab và 1/a + 1/b ≥ 1/ √ab
=> (a + b)(1/a + 1/b) ≥ 4 => 1/a + 1/b ≥ 4/a + b
dấu "=" xảy ra <=> a = b
lời giải dễ hiểu nhất như thế này này (a+b)(1/a+1/b)=1+a/b+b/a+1=2+a/b+b/a mà ta có a/b+b/a luôn luôn lớn hơn hoặc bằng 2 vầy suy ra ĐPCM(để chứng minh a/b+b/c lớn hơn hoặc bằng 2 lấy a/b+b/a-2=a^2+b^2-2ab/ab=(a-b)^2/ab luôn lớn hơn hoặc bằng o vậy a/b+b/c luôn lớn hơn hoặc bằn 2)