a:b = 9:4 ; b:c =5:3
tính : \(\dfrac{a-b}{b-c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4^{15}.9^9-8.3^{18}.8^9=2^{2.15}.3^{2.9}-2^3.3^{18}.2^{3.9}=2^{30}.3^{18}-2^{30}.3^{18}=0\)
=> A:B=0
- Xét: a : b = 9 : 4 \(\Rightarrow\frac{a}{9}=\frac{b}{4}\)\(\Rightarrow\frac{a}{45}=\frac{b}{20}\)
b : c = 5 : 3 \(\Rightarrow\frac{b}{5}=\frac{c}{3}\)\(\Rightarrow\frac{b}{20}=\frac{c}{12}\)
=> \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
- Đặt: \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\hept{\begin{cases}a=45.k\\b=20.k\\c=12.k\end{cases}}\)
-Thay a = 45.k, b = 20.k , c = 12.k vào \(\frac{a-b}{b-c}\) ;ta có:
\(\frac{a-b}{b-c}=\frac{45.k-20.k}{20.k-12.k}=\frac{25.k}{8.k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
\(A=\)\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\)
\(A=\left(\frac{9}{1}-8\right)+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)\)
\(A=1+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}\)
\(A=10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}\right)>\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}=B\)
\(\Rightarrow A:B=\frac{10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)\(=10\)
Vậy \(A:B=10\)
dat \(\frac{a}{3}\)=\(\frac{b}{4}\)=k =>a=3k va b=4k
ma \(\frac{b}{8}\)=\(\frac{c}{9}\) nen \(\frac{4k}{8}\)=\(\frac{c}{9}\)=> c=\(\frac{9k}{2}\)
theo bai ra c+a=60 =>3k+\(\frac{9k}{2}\)=60 =>\(\frac{6k+9k}{2}\)=60 =>15k=120 => k= 8
nen a=3*8=24 b=4*8=32 c=\(\frac{9\cdot8}{2}\)=36
( A - B ) / 3 = 9
A - B = 9 * 3 = 27
Từ đây lập hiệu tỉ là ra
Giải:
Ta có: \(a:b=9:4\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(b:c=5:3\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left\{\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
Lại có: \(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{\left(45-20\right)k}{\left(20-12\right)k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Giải:
Ta có: \(a:b=9:4\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(b:c=5:3\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow a=45k,b=20k,c=12k\)
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{\left(45-20\right)k}{\left(20-12\right)k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Giải:
Ta có: \(\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left[\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
Lại có: \(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{25k}{8k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Theo bài ra:
\(\dfrac{a}{b}=\dfrac{9}{4}\Rightarrow a=\dfrac{9}{4}.b\)
\(\dfrac{b}{c}=\dfrac{5}{3}\Rightarrow c=b:\dfrac{5}{3}\)
Thay \(a=\dfrac{9}{4b};c=b:\dfrac{5}{3}\) vào \(\dfrac{a-b}{b-c}\), ta có:
\(\dfrac{\dfrac{9b}{4}-b}{b-\dfrac{3b}{5}}=\dfrac{\dfrac{9b}{4}-\dfrac{4b}{4}}{\dfrac{5b}{5}-\dfrac{3b}{5}}=\dfrac{5b}{4}:\dfrac{2b}{5}=\dfrac{5b}{4}.\dfrac{5}{2b}=\dfrac{25}{8}\)
Vậy: \(\dfrac{a-b}{b-c}=\dfrac{25}{8}\)