K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2019

Ta có: \(\hept{\begin{cases}\frac{a}{3}=\frac{b}{4}\\\frac{b}{2}=\frac{c}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{6}=\frac{b}{8}\\\frac{b}{8}=\frac{c}{20}\end{cases}\Rightarrow}\frac{a}{6}=\frac{b}{8}=\frac{c}{20}}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{a}{6}=\frac{b}{8}=\frac{c}{20}=\frac{a-c+b}{6-20+8}=\frac{3}{-6}=\frac{-1}{2}\)

\(\Rightarrow\hept{\begin{cases}a=\frac{-1}{2}.6=-3\\b=\frac{-1}{2}.8=-4\\c=\frac{-1}{2}.20=-10\end{cases}}\)

Vậy ...

Ta có\(\frac{b}{2}=\frac{c}{5}\)

\(\Rightarrow\frac{b}{2}\times\frac{1}{2}=\frac{c}{5}\times\frac{1}{2}\)

\(\Rightarrow\frac{b}{4}=\frac{c}{10}\)

Mà \(\frac{a}{3}=\frac{b}{4}\)

\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{10}=\frac{a+b-c}{3+4-10}=\frac{3}{-3}=-1\)

\(\Rightarrow\hept{\begin{cases}a=-1\times3=-3\\b=-1\times4=-4\\c=-1\times10=-10\end{cases}}\)

17 tháng 8 2016

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

17 tháng 8 2016

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

25 tháng 6 2023

a) Thay \(b=a-1\) vào hệ thức thứ hai thì được \(a-1+c=a+4\) hay \(c=5\). Hơn nữa, ta thấy \(a>b\) nên \(b\) không thể là độ dài của cạnh huyền của tam giác vuông được. Sẽ có 2 trường hợp:

 TH1: \(a\) là độ dài cạnh huyền. Khi đó theo định lí Pythagoras thì \(b^2+c^2=a^2\) \(\Rightarrow b^2+25=\left(b+1\right)^2\) \(\Leftrightarrow b^2+25=b^2+2b+1\) \(\Leftrightarrow2b=24\) \(\Leftrightarrow b=12\), suy ra \(a=13\). Vậy \(\left(a,b,c\right)=\left(13,12,5\right)\)

 TH2: \(c\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras thì \(a^2+b^2=c^2\) \(\Leftrightarrow\left(b+1\right)^2+b^2=25\) \(\Leftrightarrow2b^2+2b-24=0\) \(\Leftrightarrow b^2+b-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=3\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\) \(\Rightarrow a=b+1=4\). Vậy \(\left(a,b,c\right)=\left(4,3,5\right)\)

  Như vậy, ta tìm được \(\left(a,b,c\right)\in\left\{\left(13,12,5\right);\left(4,3,5\right)\right\}\)

b) Bạn không nói rõ b', c' là gì thì mình không tính được đâu. Mình tính b, c trước nhé.

 Do \(b:c=3:4\) nên rõ ràng \(c>b\). Vì vậy \(b\) không thể là độ dài cạnh huyền được. Sẽ có 2TH

 TH1: \(c\) là độ dài cạnh huyền. Khi đó theo định lý Pythagoras thì \(a^2+b^2=c^2\). Do \(b:c=3:4\) nên \(b=\dfrac{3}{4}c\). Đồng thời \(a=125\) \(\Rightarrow125^2+\left(\dfrac{3}{4}c\right)^2=c^2\) \(\Rightarrow\dfrac{7}{16}c^2=125^2\) \(\Leftrightarrow c=\dfrac{500}{\sqrt{7}}\) \(\Rightarrow b=\dfrac{375}{\sqrt{7}}\). Vậy \(\left(b,c\right)=\left(\dfrac{375}{\sqrt{7}},\dfrac{500}{\sqrt{7}}\right)\)

 TH2: \(a\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras, ta có \(b^2+c^2=a^2=125^2\). Lại có \(b:c=3:4\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{b^2+c^2}{25}=\dfrac{125^2}{25}=625\)

\(\Rightarrow b^2=5625\Rightarrow b=75\) \(\Rightarrow c=100\). Vậy \(\left(b,c\right)=\left(75,100\right)\)

Như vậy, ta tìm được \(\left(b,c\right)\in\left\{\left(75,100\right);\left(\dfrac{350}{\sqrt{7}};\dfrac{500}{\sqrt{7}}\right)\right\}\)

 

 

26 tháng 1 2021

Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2) 

\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)

Thay lại vào (1) ; (2) ta có : 

\(\Leftrightarrow a=11-b=11-7=4\)

\(\Leftrightarrow c=3-b=3-7=-4\)

Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện ) 

26 tháng 1 2021
a a + b + b + c + a + c = 11 + 3 + 2 2a + 2b + 2c = 16 a + b + c = 8 Mà a + b = 11 Suy ra c = - 3 b + c = 3 Vậy b = 6 c + a = 2 a = 5 Vậy a = 5 ; b = 6 ; c = -3 b a + b + c + a + b + d + a + c + d = 4 + 3 + 2 a + 2a + 2b + 2c + 2d = 9 Mà a + b + c + d = 1 Suy ra a + 2 = 9 a = 7 a + c + d = 2 c + d = -5 a + b + d = 3 b + d = -4 a + b + c = 4 b + c = -3 b + c + c + d + d + b = -5 + -4 + -3 2b + 2c + 2d = -12 b + c + d = -6 b + c = -3 d = -3 c + d = -5 c = -2 b + d = -4 b = -1 Vậy a = 7 ; b = -1 ; c = -2 ; d = -3
15 tháng 11 2023

a, \(\dfrac{a}{b}\)  = \(\dfrac{3}{5}\) ⇒ a = \(\dfrac{3}{5}\)b;  \(\dfrac{b}{c}\) = \(\dfrac{4}{5}\) ⇒ c = b : \(\dfrac{4}{5}\) = \(\dfrac{5}{4}\)b

⇒ a.c =  \(\dfrac{3}{5}\)b. \(\dfrac{5}{4}\)b = \(\dfrac{3}{4}\) ⇒ b2.\(\dfrac{3}{4}\)  = \(\dfrac{3}{4}\) ⇒ b2 = 1 ⇒ \(\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}a=\dfrac{3}{5}\\a=-\dfrac{3}{5}\end{matrix}\right.\)\(\left[{}\begin{matrix}c=\dfrac{5}{4}\\c=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy các cặp số a;b;c thỏa mãn đề bài là:

(a; b; c) = (-\(\dfrac{3}{5}\); -1; - \(\dfrac{5}{4}\)) ; (\(\dfrac{3}{5}\); 1; \(\dfrac{5}{4}\))

 

 

 

15 tháng 11 2023

b, a.(a+b+c) = -12; b.(a+b+c) =18; c.(a+b+c) = 30

     ⇒a.(a+b+c) - b.(a+b+c) + c.(a+b+c) = -12 + 18 + 30

    ⇒ (a +b+c)(a-b+c) = 0

     ⇒ a - b + c = 0 ⇒ a + c  =b

Thay a + c  =  b vào biểu thức: b.(a+b+c) =18 ta có:

            b.(b + b) = 18

             2b.b = 18

              b2 = 18: 2

              b2 = 9 ⇒ \(\left[{}\begin{matrix}b=-3\\b=3\end{matrix}\right.\)

Thay a + c = b vào biểu thức c.(a + b + c) = 30 ta có:

        c.(b+b) = 30 ⇒ 2bc = 30 ⇒ bc = 30: 2 = 15 ⇒ c = \(\dfrac{15}{b}\)

Thay a + c = b vào biểu thức a.(a+b+c) = -12 ta có:

     a.(b + b) = -12 ⇒2ab = -12 ⇒ ab = -12 : 2 = - 6 ⇒ a = - \(\dfrac{6}{b}\)

Lập bảng ta có: 

b -3 3
a = \(-\dfrac{6}{b}\) 2 -2
c = \(\dfrac{15}{b}\) -5 5

Vậy các cặp số a; b; c thỏa mãn đề bài là:

(a; b; c) = (2; -3; -5); (-2; 3; 5)

 

 

 

     

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

a) Vì \(2a=5b\) nên \(\dfrac{a}{5}=\dfrac{b}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+4b}{3.5+2.4}=\dfrac{46}{23}=2\)

\( \Rightarrow a=2.5=10;\\b=2.2=4\)

Vậy \(a = 10 ; b = 4\)

b) Vì a : b : c = 2 : 4 : 5

\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}= \dfrac{{a + b - c}}{{2 + 4 - 5}}= \dfrac{3}{1}=3\)

\( \Rightarrow a = 3.2=6;\\b = 3.4=12;\\c =3.5=15.\)

Vậy \(a=6;b=12;c=15\).

9 tháng 8 2020

a) Ta có \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\)

=> \(\frac{1}{2}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{3}c.\frac{1}{12}\) 

=> \(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}\)

=> \(\frac{a}{24}=\frac{3b}{48}=\frac{c}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}=\frac{3b}{48}=\frac{3b-c}{48-9}=\frac{-3,9}{39}=-\frac{1}{10}\)

=> a = -2,4 ; b = -1,6 ; c = -0,9

b) Ta có \(\frac{3}{4}a=\frac{5}{6}b\)

=> \(\frac{3}{4}a.\frac{1}{15}=\frac{5}{6}b.\frac{1}{15}\)

=> \(\frac{a}{20}=\frac{b}{18}\)(1)

Lại có : \(5a=4c\Rightarrow\frac{a}{4}=\frac{c}{5}\Rightarrow\frac{a}{4}.\frac{1}{5}=\frac{c}{5}.\frac{1}{5}\Rightarrow\frac{a}{20}=\frac{c}{25}\)(2)

Từ (1) ; (2) => \(\frac{a}{20}=\frac{b}{18}=\frac{c}{25}\)

=> \(\frac{3a}{60}=\frac{b}{18}=\frac{2c}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{20}=\frac{b}{18}=\frac{c}{15}=\frac{3a}{60}=\frac{2c}{50}=\frac{2c+b-3a}{50+18-60}=-\frac{16}{8}=-2\)

=>  a = -40 ; b = - 36 ; z = -30

9 tháng 8 2020

a) \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{3}{4}}\Rightarrow\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}\)và 3b - c = -3, 9

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}=\frac{3b-c}{4-\frac{3}{4}}=\frac{-3,9}{\frac{13}{4}}=-\frac{6}{5}\)

\(\Rightarrow\hept{\begin{cases}a=-\frac{12}{5}\\b=-\frac{8}{5}\\c=-\frac{9}{10}\end{cases}}\)

b) \(\frac{3}{4}a=\frac{5}{6}b\Rightarrow\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}\)(1)

 \(5a=4c\Rightarrow\frac{a}{\frac{1}{5}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a}{\frac{4}{3}}=\frac{c}{\frac{5}{3}}\)(2)

Từ (1) và (2) => \(\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}=\frac{c}{\frac{5}{3}}\)và 2c + b - 3a = -16

\(\Rightarrow\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}\)và 2c + b - 3a = -16

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}=\frac{2c+b-3a}{\frac{10}{3}+\frac{6}{5}-4}=\frac{-16}{\frac{8}{15}}=-30\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-36\\c=-50\end{cases}}\)

29 tháng 4 2017

Áp dụng bđt Cauchy - Schwarz dưới dạng Engel ta có :

\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{3}=\frac{\left(\frac{9}{3}\right)^2}{3}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

3 tháng 8 2015

b) 3a = 2b; 7b = 5c

=> a/2 = b/3; b/5 = c/7

=> a/10 = b/15 = c/21

Áp dụng tính chất dãy tỉ số bằng nhau, có:

 \(\frac{a}{10}=\frac{b}{15}=\frac{c}{21}=\frac{a-b+c}{10-15+21}=\frac{32}{16}=2\)

suy ra; a/10 = 2    => a = 10 * 2 = 20

         b/15 = 2       => b = 15 * 2 = 30

       c/21 = 2         => c = 21 * 2 = 42