Tìm a,b,c biết : a/3=b/4; b/2=c/5 và a-c + b = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
a) Thay \(b=a-1\) vào hệ thức thứ hai thì được \(a-1+c=a+4\) hay \(c=5\). Hơn nữa, ta thấy \(a>b\) nên \(b\) không thể là độ dài của cạnh huyền của tam giác vuông được. Sẽ có 2 trường hợp:
TH1: \(a\) là độ dài cạnh huyền. Khi đó theo định lí Pythagoras thì \(b^2+c^2=a^2\) \(\Rightarrow b^2+25=\left(b+1\right)^2\) \(\Leftrightarrow b^2+25=b^2+2b+1\) \(\Leftrightarrow2b=24\) \(\Leftrightarrow b=12\), suy ra \(a=13\). Vậy \(\left(a,b,c\right)=\left(13,12,5\right)\)
TH2: \(c\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras thì \(a^2+b^2=c^2\) \(\Leftrightarrow\left(b+1\right)^2+b^2=25\) \(\Leftrightarrow2b^2+2b-24=0\) \(\Leftrightarrow b^2+b-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=3\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\) \(\Rightarrow a=b+1=4\). Vậy \(\left(a,b,c\right)=\left(4,3,5\right)\)
Như vậy, ta tìm được \(\left(a,b,c\right)\in\left\{\left(13,12,5\right);\left(4,3,5\right)\right\}\)
b) Bạn không nói rõ b', c' là gì thì mình không tính được đâu. Mình tính b, c trước nhé.
Do \(b:c=3:4\) nên rõ ràng \(c>b\). Vì vậy \(b\) không thể là độ dài cạnh huyền được. Sẽ có 2TH
TH1: \(c\) là độ dài cạnh huyền. Khi đó theo định lý Pythagoras thì \(a^2+b^2=c^2\). Do \(b:c=3:4\) nên \(b=\dfrac{3}{4}c\). Đồng thời \(a=125\) \(\Rightarrow125^2+\left(\dfrac{3}{4}c\right)^2=c^2\) \(\Rightarrow\dfrac{7}{16}c^2=125^2\) \(\Leftrightarrow c=\dfrac{500}{\sqrt{7}}\) \(\Rightarrow b=\dfrac{375}{\sqrt{7}}\). Vậy \(\left(b,c\right)=\left(\dfrac{375}{\sqrt{7}},\dfrac{500}{\sqrt{7}}\right)\)
TH2: \(a\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras, ta có \(b^2+c^2=a^2=125^2\). Lại có \(b:c=3:4\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{b^2+c^2}{25}=\dfrac{125^2}{25}=625\)
\(\Rightarrow b^2=5625\Rightarrow b=75\) \(\Rightarrow c=100\). Vậy \(\left(b,c\right)=\left(75,100\right)\).
Như vậy, ta tìm được \(\left(b,c\right)\in\left\{\left(75,100\right);\left(\dfrac{350}{\sqrt{7}};\dfrac{500}{\sqrt{7}}\right)\right\}\)
Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2)
\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)
Thay lại vào (1) ; (2) ta có :
\(\Leftrightarrow a=11-b=11-7=4\)
\(\Leftrightarrow c=3-b=3-7=-4\)
Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện )
a, \(\dfrac{a}{b}\) = \(\dfrac{3}{5}\) ⇒ a = \(\dfrac{3}{5}\)b; \(\dfrac{b}{c}\) = \(\dfrac{4}{5}\) ⇒ c = b : \(\dfrac{4}{5}\) = \(\dfrac{5}{4}\)b
⇒ a.c = \(\dfrac{3}{5}\)b. \(\dfrac{5}{4}\)b = \(\dfrac{3}{4}\) ⇒ b2.\(\dfrac{3}{4}\) = \(\dfrac{3}{4}\) ⇒ b2 = 1 ⇒ \(\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}a=\dfrac{3}{5}\\a=-\dfrac{3}{5}\end{matrix}\right.\); \(\left[{}\begin{matrix}c=\dfrac{5}{4}\\c=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy các cặp số a;b;c thỏa mãn đề bài là:
(a; b; c) = (-\(\dfrac{3}{5}\); -1; - \(\dfrac{5}{4}\)) ; (\(\dfrac{3}{5}\); 1; \(\dfrac{5}{4}\))
b, a.(a+b+c) = -12; b.(a+b+c) =18; c.(a+b+c) = 30
⇒a.(a+b+c) - b.(a+b+c) + c.(a+b+c) = -12 + 18 + 30
⇒ (a +b+c)(a-b+c) = 0
⇒ a - b + c = 0 ⇒ a + c =b
Thay a + c = b vào biểu thức: b.(a+b+c) =18 ta có:
b.(b + b) = 18
2b.b = 18
b2 = 18: 2
b2 = 9 ⇒ \(\left[{}\begin{matrix}b=-3\\b=3\end{matrix}\right.\)
Thay a + c = b vào biểu thức c.(a + b + c) = 30 ta có:
c.(b+b) = 30 ⇒ 2bc = 30 ⇒ bc = 30: 2 = 15 ⇒ c = \(\dfrac{15}{b}\)
Thay a + c = b vào biểu thức a.(a+b+c) = -12 ta có:
a.(b + b) = -12 ⇒2ab = -12 ⇒ ab = -12 : 2 = - 6 ⇒ a = - \(\dfrac{6}{b}\)
Lập bảng ta có:
b | -3 | 3 |
a = \(-\dfrac{6}{b}\) | 2 | -2 |
c = \(\dfrac{15}{b}\) | -5 | 5 |
Vậy các cặp số a; b; c thỏa mãn đề bài là:
(a; b; c) = (2; -3; -5); (-2; 3; 5)
a) Vì \(2a=5b\) nên \(\dfrac{a}{5}=\dfrac{b}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+4b}{3.5+2.4}=\dfrac{46}{23}=2\)
\( \Rightarrow a=2.5=10;\\b=2.2=4\)
Vậy \(a = 10 ; b = 4\)
b) Vì a : b : c = 2 : 4 : 5
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}= \dfrac{{a + b - c}}{{2 + 4 - 5}}= \dfrac{3}{1}=3\)
\( \Rightarrow a = 3.2=6;\\b = 3.4=12;\\c =3.5=15.\)
Vậy \(a=6;b=12;c=15\).
a) Ta có \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\)
=> \(\frac{1}{2}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{3}c.\frac{1}{12}\)
=> \(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}\)
=> \(\frac{a}{24}=\frac{3b}{48}=\frac{c}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}=\frac{3b}{48}=\frac{3b-c}{48-9}=\frac{-3,9}{39}=-\frac{1}{10}\)
=> a = -2,4 ; b = -1,6 ; c = -0,9
b) Ta có \(\frac{3}{4}a=\frac{5}{6}b\)
=> \(\frac{3}{4}a.\frac{1}{15}=\frac{5}{6}b.\frac{1}{15}\)
=> \(\frac{a}{20}=\frac{b}{18}\)(1)
Lại có : \(5a=4c\Rightarrow\frac{a}{4}=\frac{c}{5}\Rightarrow\frac{a}{4}.\frac{1}{5}=\frac{c}{5}.\frac{1}{5}\Rightarrow\frac{a}{20}=\frac{c}{25}\)(2)
Từ (1) ; (2) => \(\frac{a}{20}=\frac{b}{18}=\frac{c}{25}\)
=> \(\frac{3a}{60}=\frac{b}{18}=\frac{2c}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{20}=\frac{b}{18}=\frac{c}{15}=\frac{3a}{60}=\frac{2c}{50}=\frac{2c+b-3a}{50+18-60}=-\frac{16}{8}=-2\)
=> a = -40 ; b = - 36 ; z = -30
a) \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{3}{4}}\Rightarrow\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}\)và 3b - c = -3, 9
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}=\frac{3b-c}{4-\frac{3}{4}}=\frac{-3,9}{\frac{13}{4}}=-\frac{6}{5}\)
\(\Rightarrow\hept{\begin{cases}a=-\frac{12}{5}\\b=-\frac{8}{5}\\c=-\frac{9}{10}\end{cases}}\)
b) \(\frac{3}{4}a=\frac{5}{6}b\Rightarrow\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}\)(1)
\(5a=4c\Rightarrow\frac{a}{\frac{1}{5}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a}{\frac{4}{3}}=\frac{c}{\frac{5}{3}}\)(2)
Từ (1) và (2) => \(\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}=\frac{c}{\frac{5}{3}}\)và 2c + b - 3a = -16
\(\Rightarrow\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}\)và 2c + b - 3a = -16
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}=\frac{2c+b-3a}{\frac{10}{3}+\frac{6}{5}-4}=\frac{-16}{\frac{8}{15}}=-30\)
\(\Rightarrow\hept{\begin{cases}a=-40\\b=-36\\c=-50\end{cases}}\)
Áp dụng bđt Cauchy - Schwarz dưới dạng Engel ta có :
\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{3}=\frac{\left(\frac{9}{3}\right)^2}{3}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
b) 3a = 2b; 7b = 5c
=> a/2 = b/3; b/5 = c/7
=> a/10 = b/15 = c/21
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{21}=\frac{a-b+c}{10-15+21}=\frac{32}{16}=2\)
suy ra; a/10 = 2 => a = 10 * 2 = 20
b/15 = 2 => b = 15 * 2 = 30
c/21 = 2 => c = 21 * 2 = 42
Ta có: \(\hept{\begin{cases}\frac{a}{3}=\frac{b}{4}\\\frac{b}{2}=\frac{c}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{6}=\frac{b}{8}\\\frac{b}{8}=\frac{c}{20}\end{cases}\Rightarrow}\frac{a}{6}=\frac{b}{8}=\frac{c}{20}}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{a}{6}=\frac{b}{8}=\frac{c}{20}=\frac{a-c+b}{6-20+8}=\frac{3}{-6}=\frac{-1}{2}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{-1}{2}.6=-3\\b=\frac{-1}{2}.8=-4\\c=\frac{-1}{2}.20=-10\end{cases}}\)
Vậy ...
Ta có\(\frac{b}{2}=\frac{c}{5}\)
\(\Rightarrow\frac{b}{2}\times\frac{1}{2}=\frac{c}{5}\times\frac{1}{2}\)
\(\Rightarrow\frac{b}{4}=\frac{c}{10}\)
Mà \(\frac{a}{3}=\frac{b}{4}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{10}=\frac{a+b-c}{3+4-10}=\frac{3}{-3}=-1\)
\(\Rightarrow\hept{\begin{cases}a=-1\times3=-3\\b=-1\times4=-4\\c=-1\times10=-10\end{cases}}\)