Tìm x,y biết : a, (x-1).(x^2+1)=0 ; b, x.y+3.x-2.y=11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}\ge2+x+y+\frac{4}{x+y}+2\)
\(=4+\frac{2}{x+y}+\left(x+y\right)+\frac{2}{x+y}\)\(\ge4+2\sqrt{2}+\frac{2}{x+y}\)
Ta lại có
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x+y\le\sqrt{2}\)
Suy ra \(A\ge4+2\sqrt{2}+\frac{2}{\sqrt{2}}=4+3\sqrt{2}\)
Đẳng thức xảy ra <=> \(x=y=\frac{1}{\sqrt{2}}\)
B1: Đk: 5x ≥ 0 => x ≥ 0
Vì |x + 1| ≥ 0 => |x + 1| = x + 1
|x + 2| ≥ 0 => |x + 2| = x + 2
|x + 3| ≥ 0 => |x + 3| = x + 3
|x + 4| ≥ 0 => |x + 4| = x + 4
=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x
=> x + 1 + x + 2 + x + 3 + x + 4 = 5x
=> 4x + 10 = 5x
=> x = 10
B2: Ta có: |x - 2018| = |2018 - x|
=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018
Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0
Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)
Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)
Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018
B3:
a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0
=> |x + 1| + |2y - 4| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy...
b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0
=> |x - y + 1| + (y - 3)2 ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy...
c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0 ; |2x - 1| ≥ 0
=> |x + y| + |x - z| + |2x - 1| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
a) với x<1 thì x-1<0& x-5<0=> (x-1)(x-5) >0 => loại
1<x<5 thì x-1>0 và x-5<0 => (x-1)(x-5) <0 nhận
với x> 5 thì x-1>0& x-5>0=> (x-1)(x-5) >0 => loại
KL nghiệm 1<x<5
b) x-3>0 => x>3
c) (x-1)(x+1)(x-3)(x+3)<0
lý luận như (a) {-3...-1...1...3}
KL Nghiệm: -3<x<-1 hoạc -1<x<3
bài 2:
x+2={-3.-1,1,3}=> x={-5,-3,-1,1}
y-1={1,3,-3,-1}=> y={2,4,-2,0}
KL nghiệm (x,y)=(-5,2);(-3,4);(-1,-2); (1,0)
2,
b, ( x -7 ) . ( y + 2) =0
suy ra x -7 =0 hoặc y + 2 =0
suy ra x =7 hoặc x =-2
chỗ ghi chữ hoặc bạn dùng dấu hoặc thay thế nhé
vì tren máy tính nen mình khonng biết ghi dấu hoặc
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
xy + 3x-2y=11
<=> x(y+3)-2(y+3)=5
<=>(x-2)(y+3)=5
suy ra (x-2) và (y+3) là các ước nguyên của 5.
Th1. x-2=1 <=>x=3
y+3=5 <=> y=2
Th2 x-2=-1 <=> x=1
y+3=-5 <=> y= -8
Th3. x-2=5 <=> x=7
y+3=1 <=> y= -2
Th4. x-2= -5 <=> x= -3
y+3= -1 <=> y= -4
Vậy (x,y) = (3, 2); (1, -8); (7, -2); (-3, -4)
tích nha