Cho tam giác ABC (AB + AC), phân giác AD. Trên nửa mặt phẳng bờ BC không chứa A Gọi E là giao điểm của Cx và AD. Chứng minh:
a) tam giác ADB đồng dạng tam giác ACE;
b) AD.DE = DB.CD: c) AD? = AB. AC - DB. DC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔADB và ΔCDE có
\(\widehat{ADB}=\widehat{CDE}\)(hai góc đối đỉnh)
\(\widehat{BAD}=\widehat{ECD}\)(gt)
Do đó: ΔADB\(\sim\)ΔCDE(g-g)
Bài giải
a,
\(\widehat{DAC}=\widehat{BAD}=\widehat{DBI}\)( AD là tia phân giác \(\widehat{BAC}\) )
\(\widehat{ADC}=\widehat{BDI}\)
\(\Rightarrow\Delta ADC\sim\Delta BDI\left(g.g\right)\)
b, \(\Delta ADC\sim\Delta BDI\left(cmt\right)\Rightarrow\widehat{AIB}=\widehat{ACD}\)
\(\widehat{BAD}=\widehat{DAC}\)
\(\Rightarrow\Delta ABI\sim\Delta ADC\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{AI}=\dfrac{AD}{AC}\Rightarrow AB.AC=AD.AI\)
AB + AC??
Đề sai à?
Mk nghĩ là AC>AB thì phải hoặc ngược lại