cho tam giá abc cân tại a ; am là đường trung tuyến m thuộc bc . Từ điểm D trên AM kẻ DE vuông góc với AB DF vuông góc với AB
chứng minh DE=DF
biết AE=8cm DF=6cm tính độ dài đoạn thẳng ad
Vẽ hình hộ mình nhé cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
_Giải _
a) C/m t/g AMC cân tại M
* Xét t/g AMN và t/g CMN :
- AN = CN ( N là trung điểm )
- Góc ANM = CNM ( = 900 do MN là trung trực đoạn AC )
- MN chung
=> T/g AMN = T/g CMN
=> MA = MC
=> T/g AMC cân tại M
b ) Em hông biết làm .. T.T Thông cẻm nhe :)))))
Vì tam giác ABC vuông tại A nên: A B → . A C → = 0
A C → . B C → = A C → . A C → − A B → = A C → 2 − A C → . A B → = A C 2 − 0 = a 2
Chọn B.
Vì tam giác ABC vuông tại A nên: A B → . A C → = 0
A B → . B C → = A B → . A C → − A B → = A B → . A C → − A B → 2 = 0 − A B → 2 = − a 2
Chọn C.
BD và CE là 2 đường trung tuyến.
=> EA=EB , DA=DC
ΔABC cân tại A=> AB=AC
=> AE=AD=> ΔAED cân tại A
. Xét ΔABD và Δ ACE có:
góc A chung
AB=AC (GT)
AD=AE (chứng minh trên)
=> ΔABD = ΔACE( c.g.c)
. EA = EB , DA=DC => ED là đườn TB của Δ ABC => ED //BC => tứ giác BCDE là hình thang
ΔABD = ΔACE => BD = CE ( Hai cạnh tương ứng)
=> BCDE là hình thang cân
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A có AM là đường cao
nên AM là phân giác của góc DAE
a
Theo đề có \(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A)
Lại có: \(\widehat{ABD}+\widehat{ABC}=\widehat{ACE}+\widehat{ACB}\left(=180^o\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
`AB=AC`
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
`DB=CE`
=> ΔABD = ΔACE
=> `AD=AE` (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
b
Ta có:
`BM=CM`
`DB=CE`
\(\Rightarrow\)`DM=EM`
\(\Rightarrow\)AM là đường trung tuyến của ΔADE
\(\Rightarrow\)AM là tia phân giác của \(\widehat{DAE}\)