1,Cho3x=4y.Tính\(\frac{2xy+3x^2}{3xy+4x^2}\)
2,Cho a+b=3; ab=2
Tính K = \(a^2\)+3ab + 3a + 3b + 1+ \(b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(2x^2y^3.\frac{1}{4}xy.\left(-3xy\right)=-\frac{3}{2}x^4y^5\text{ đa thức có bậc 4+5 = 9}\)
b. \(\left(-3xy^3\right)^3\left(-\frac{2}{3}x^4y\right)=-27x^3y^9\left(-\frac{2}{3}x^4y\right)=18x^7y^{10}\text{ có bậc 7+10 = 17}\)
c.. \(\frac{2}{3}xy^2-2xy+4x^2y+12+2xy^2-3xy-20-4x^2y=\frac{8}{3}xy^2-5xy-8\) có bậc 3
\(a,3x\left(3x+6\right)=9x^2+18x\)
\(b,-\dfrac{1}{2}xy\left(4x^2+6x\right)\)
\(=-2x^3y-3x^2y\)
\(c,-2x^2y^3\left(\dfrac{1}{2}xy+4y^2\right)\)
\(=-x^3y^4-8x^2y^5\)
\(d,-6x^2\left(\dfrac{1}{3}xy^2-\dfrac{1}{2}y\right)\)
\(=-2x^3y^2+3x^2y\)
#\(Urushi\)
a: =xy(1/3+4-2)=7/3xy
b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2
c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2
d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z
a: \(=\left(4xy^2+2xy^2\right)+\left(3x^2y-3x^2y\right)=6xy^2\)
b: \(=xy\left(\dfrac{1}{5}+\dfrac{1}{3}\right)+xy^2\left(\dfrac{4}{3}-\dfrac{2}{5}\right)=\dfrac{8}{15}xy+\dfrac{14}{15}xy^2\)
d: \(=\dfrac{-4}{9}\cdot\dfrac{3}{2}\cdot xy^2\cdot xy^3=-\dfrac{2}{3}x^2y^5\)
\(a,x^3\left(3x^2-x-\dfrac{1}{2}\right)\)
\(=3x^5-x^4-\dfrac{1}{2}x^3\)
\(b,\left(5xy-x^2+y\right).\dfrac{2}{5xy^2}\)
\(=\dfrac{2}{y}-\dfrac{2x}{5y^2}+\dfrac{2}{xy}\)
\(c,\left(4x^3-3xy^2+2xy\right)\left(-\dfrac{1}{3}x^2y\right)\)
\(=-\dfrac{4x^5y}{3}+x^3y^3-\dfrac{2x^3y^2}{3}\)
\(A=4x^2-5xy+3y^2\\\Rightarrow 2A=2\cdot(4x^2-5xy+3y^2)\\\Rightarrow2A=8x^2-10xy+6y^2\\B=3x^2+2xy+y^2\\\Rightarrow3B=3\cdot(3x^2+2xy+y^2)\\\Rightarrow3B=9x^2+6xy+3y^2\\C=-x^2+3xy+2y^2\)
Khi đó: $2A-3B-C$
$=(8x^2-10xy+6y^2)-(9x^2+6xy+3y^2)-(-x^2+3xy+2y^2)$
$=8x^2-10xy+6y^2-9x^2-6xy-3y^2+x^2-3xy-2y^2$
$=(8x^2-9x^2+x^2)+(-10xy-6xy-3xy)+(6y^2-3y^2-2y^2)$
$=-19xy+y^2$
2A-3B-C
\(=2\left(4x^2-5xy+3y^2\right)-3\left(3x^2+2xy+y^2\right)+x^2-3xy-2y^2\)
\(=8x^2-10xy+6y^2-9x^2-6xy-3y^2+x^2-3xy-2y^2\)
\(=-19xy+y^2\)