Cho a - b = 8; ab = 20
Tính a4 + b4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đề :
\(a=8m+6\)
\(b=8n+2\) \(\left(m;n\inℕ^∗\right)\)
\(\Rightarrow a+b=8m+8n+8=8\left(m+n+1\right)⋮8\)
\(\Rightarrow dpcm\)
b) \(2a-b=2\left(8m+6\right)-\left(8n+2\right)\)
\(\Rightarrow2a-b=16m+12-8n-2\)
\(\Rightarrow2a-b=16m-8n+10\)
\(\Rightarrow2a-b=16m-8n+8+2\)
\(\Rightarrow2a-b=8\left(2m-n+1\right)+2\)
\(\Rightarrow2a-b:8\) dư \(2\)
\(\frac{8}{11}+\frac{a}{b}=\frac{8}{11}\)
\(\Rightarrow\frac{a}{b}=0\)
\(\Rightarrow a=0;b\in Z;b\ne0\)
Làm sao ra được \(6^a\) vậy ạ? \(8^a-2^a=2^a\left(2^{2a}-1\right)\)???
Đặt \(\left\{{}\begin{matrix}2^a=x>0\\2^b=y>0\\2^c=z>0\end{matrix}\right.\) \(\Rightarrow xyz=2^a.2^b.2^c=2^{a+b+c}=1\)
BĐT cần c/m trở thành: \(x^3+y^3+z^3\ge x+y+z\) với \(xyz=1\)
Ta có:
\(x^3+1+1\ge3x\) ; \(y^3+1+1\ge3y\) ; \(z^3+1+1\ge3z\)
\(\Rightarrow x^3+y^3+z^3\ge\left(x+y+z\right)+2\left(x+y+z\right)-6\ge x+y+z+6-6=x+y+z\)
\(\frac{a+8}{b+9}=\frac{a-8}{b-9}\)
\(\left(a+8\right)\left(b-9\right)=\left(a-8\right)\left(b+9\right)\)
\(ab-9a+8b-72=ab+9a-8b-72\)
\(-9a+8b=9a-8b\)
\(8b+8b=9a+9a\)
\(16b=18a\)
\(b=\frac{18a}{16}\)
\(b=\frac{9}{8}a\)
\(\frac{b}{a}=\frac{9}{8}\)
\(\frac{a}{b}=\frac{8}{9}\)
Có:\(\frac{a+8}{b+9}=\frac{a-8}{b-9}\)\(\left(a\ne8;b\ne9\right)\)
\(\Leftrightarrow\left(a+8\right)\left(b-9\right)=\left(a-8\right)\left(b+9\right)\)
\(\Leftrightarrow ab-9a+8b-72=ab+9a-8b-72\)
\(\Leftrightarrow-9a+8b=9a-8b\)
\(\Leftrightarrow18a=16b\)
\(\Leftrightarrow\frac{a}{b}=\frac{8}{9}\)
Vậy\(\frac{a}{b}=\frac{8}{9}\)
Linz
Vì \(a+c=2b;dc+bc=2bd\Rightarrow\frac{dc+bc}{a+c}=\frac{2bd}{2b}=d\)
\(\Rightarrow bc+dc=\left(a+c\right)d=ad+dc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^8=\frac{a^8+b^8}{c^8+d^8}\)
a.b+1 chia hết cho 8
=> a.b chia 8 dư 7
=> a.b chia 8 dư 1.7
=> a hoặc b chia 8 dư 1
và b hoặc a chia 8 dư 7
=> a + b chia 8 dư 1+7
=> a+b chia 8 dư 8
=> a+b chia hết cho 8 (đpcm)
Đề tuyển sinh vào trường chuyên tỉnh Hải Dương năm 2019-2020
Ta có \(M=\frac{a^2+b^2}{a^2-b^2}+\frac{a^2-b^2}{a^2+b^2}=\frac{\left(a^2+b^2\right)^2+\left(a^2-b^2\right)^2}{\left(a^2-b^2\right)\left(a^2+b^2\right)}=\frac{2\left(a^4+b^4\right)}{a^4-b^4}=2+\frac{4b^4}{a^4-b^4}\)
\(N=\frac{\left(a^8+b^8\right)^2+\left(a^8-b^8\right)^2}{\left(a^8-b^8\right)\left(a^8+b^8\right)}=\frac{2\left(a^{16}+b^{16}\right)}{a^{16}-b^{16}}=1+\frac{4b^{16}}{a^{16}-b^{16}}\)
+) b=0 => M=2; N=2 => M=N
+) b\(\ne\)0 => \(M=2+\frac{4}{\left(\frac{a}{b}\right)^4-1}\)đặt \(t=\left(\frac{a}{b}\right)^4\)
\(\Rightarrow M-2=\frac{4}{t^4-1}\Rightarrow\frac{4}{M-2}=t^4-1\Rightarrow t^4=\frac{4}{M-2}+1=\frac{2+M}{M-2}\)
\(N=2+\frac{4}{\left(\frac{1}{b}\right)^{16}+1}=2+\frac{4}{\left(t^4\right)^4+1}=2+\frac{4}{\left(\frac{2+M}{M-2}\right)^4-1}\)
Lời giải:
$a=b+1\Rightarrow a-b=1$
Khi đó:
$(a+b)(a^2+b^2)(a^4+b^4)=(a-b)(a+b)(a^2+b^2)(a^4+b^4)$
$=(a^2-b^2)(a^2+b^2)(a^4+b^4)=(a^4-b^4)(a^4+b^4)=a^8-b^8$
10016