Biết a , b > 0 ; a+b = a^2 + b^2 = a^3 + b^3 . Tính a^2015 + b^2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách ngắn hơn ( nên làm cách này ) :
Ta có :
\(a>0\)
\(b>0\)
\(\Rightarrow\)\(ab>0\) \(\left(1\right)\)
Lại có :
\(a^2\ge0\)
\(b^2\ge0\)
\(\Rightarrow\)\(a^2+b^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)
Mà \(a>0\)\(;\)\(b>0\) nên dấu "=" không thể xảy ra
\(\Rightarrow\)\(a^2+b^2>0\) \(\left(2\right)\)
Cộng theo vế (1) và (2) ta được :
\(a^2+ab+b^2>0\) ( đpcm )
Vậy nếu \(a>0\)\(;\)\(b>0\) thì \(a^2+ab+b^2>0\)
Chúc bạn học tốt ~
\(a.\) \(a.b< 0\)
\(\Leftrightarrow a\) và \(b\) là 2 số khác dấu.
Mà: \(a>b\)
\(\Rightarrow\) \(a\) là số âm và \(b\) là số dương.
\(b.\) \(a.b>0\)
\(\Leftrightarrow a\) và \(b\) cùng dấu
Mà: \(a+b< 0\)
\(\Rightarrow a\) và \(b\) là số âm.
Ta có : \(a+b=a^2+b^2=a^3+b^3\)
\(\Rightarrow a+b+a^3+b^2=2\left(a^2+b^2\right)\)
\(\Rightarrow\left(a-2a^2+a^3\right)+\left(b-2b^2+b^3\right)=0\)
\(\Rightarrow a\left(1-2a+a^2\right)+b\left(1-2b+b^2\right)=0\)
\(\Rightarrow a\left(1-a\right)^2+b\left(1-b\right)^2=0\left(1\right)\)
Vì : \(a>0;\left(1-a\right)^2\ge0\)
\(\Rightarrow a\left(1-a\right)^2\ge0\)
Vì : \(b>0;\left(1-b\right)^2\ge0\)
\(\Rightarrow b\left(1-b\right)^2\ge0\)
Do đó :
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}a\left(1-a\right)^2=0\\b\left(1-b\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}1-a=0\\1-b=0\end{cases}\Leftrightarrow}a=b=1}\)
Khi đó : \(a^{2015}+b^{2015}=1^{2015}+1^{2015}=2\)
Chúc bạn học tốt !!!