Cho a thuộc Z và x = a/3 + a2/3 + a6/3
a, Tính x biết a = 0 ; a = 1 ; a = 2
b, số x có phải số nguyên không với a thuộc Z . Vì sao ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
xét tích 3 số
=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)
=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)
=18.a^10.b^8.c^5 bé hơn hoặc bằng 0
=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc
bây giờ mk đi học rùi tí về mk làm típ nhá
a: DKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(A=\left(\dfrac{x}{\left(x-3\right)\left(x+3\right)}+\dfrac{-1}{x-3}\right)\cdot\dfrac{x+3}{3}\)
\(=\dfrac{x-x-3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{3}=\dfrac{-1}{x-3}\)
c: Thay x=5 vào A, ta được:
\(A=\dfrac{-1}{5-3}=-\dfrac{1}{2}\)
d: Để A là số nguyên thì \(x-3\in\left\{1;-1\right\}\)
hay \(x\in\left\{4;2\right\}\)
ab, đk x khác 3 ; -3
\(A=\left(\dfrac{x}{x^2-9}-\dfrac{1}{x-3}\right):\dfrac{3}{x+3}\Leftrightarrow=\left(\dfrac{x-x-3}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{3}{x+3}=-\dfrac{1}{x-3}\)
c, x^2 - 8x + 15 = 0 <=> (x-3)(x-5) = 0 <=> x = 3 (ktm) ; x= 5
Thay x = 5 vào A ta được : A =-1/2
d, \(\Rightarrow x-3\inƯ\left(-1\right)=\left\{\pm1\right\}\)
TH1 : x - 3 = 1 <=> x = 4
TH2 : x - 3 = -1 <=> x = 2
\(3a^2+2b^2=7ab\)
\(\Leftrightarrow3a^2-7ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow a=2b;b=3a\)
Bạn chỉ cần thay vào thì nó tự triệt tiêu biến, còn mỗi const thôi nhé !
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....