\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\): \(\frac{1}{\sqrt{a}-\sqrt{b}}\)điều kiện: a>0; b>0; a\(\ne\)b
a/ Rút gọn B
b/ Tosnh B khi a = \(\sqrt{\left(2+\sqrt{3}\right)}\)và b = \(\sqrt{\left(2-\sqrt{3}\right)}\)
Giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\cdot\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
\(=a-b\)
\(A=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right):\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}=\left[\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}\right].\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\left[\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right].\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\frac{\left(a-b\right)\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{a-b}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}-\sqrt{b}\)
\(A=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right):\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}\\ =\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}\right):\frac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\\ =\left(\frac{\sqrt{a^2}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{b^2}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right):\frac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}(\sqrt{a}-\sqrt{b})}\\ =\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}.\frac{\sqrt{ab}(\sqrt{a}-\sqrt{b})}{\sqrt{a}+\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}\)
Lời giải:
Đặt biểu thức vế trái là $P$
Hiển nhiên $a,b,c$ không thể cùng đồng thời bằng $0$
Nếu trong 3 số $a,b,c$ có 2 số bằng $0$ thì $ab+bc+ac=0$ (trái giả thiết)
Nếu trong 3 số $a,b,c$ có 1 số bằng $0$. Giả sử đó là $a$
Khi đó:
$P=\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{b}}\geq 2$ theo BĐT AM-GM $(*)$
Nếu cả 3 số $a,b,c$ đều lớn hơn $0$
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}=\frac{b+c}{a}.1\left(\frac{\frac{b+c}{a}+1}{2}\right)^2\leq \left(\frac{a+b+c}{2a}\right)^2\Rightarrow \sqrt{\frac{b+c}{a}}\leq \frac{a+b+c}{2a}\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Hoàn toàn tương tự:
\(\sqrt{\frac{b}{a+c}}\geq \frac{2b}{a+b+c}; \sqrt{\frac{c}{a+b}}\geq \frac{2c}{a+b+c}\)
Cộng theo vế thì $P\geq 2 (**)$
Từ $(*); (**)\Rightarrow$ đpcm.
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)
b) Giống câu a ?
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)
\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)
\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)
\(=\sqrt{ab}\)
\(a)\) \(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=a-b\)
\(b)\) \(B=a-b=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)\(\Rightarrow\)\(B^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)
\(B^2=4-2\sqrt{4-3}=4-2=2\)\(\Rightarrow\)\(B=\sqrt{2}\) ( vì \(B>0\) )
...
cảm ơn nhe <3 :))