Cho a,b,c thuộc R ; a,b,c>0, a+b+c=1
Cmr \(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: B\A=(-1;4]
\(C_R^B=R\text{\B}=(-\infty;-1]\cup\left(6;+\infty\right)\)
b: C=(-2;4]
D={0}
\(C\cap D=(-2;4]\)
Ta có: ab+bc+ca=abc
nên abc-ab-bc-ac=0
Ta có: a+b+c=1
nên a+b+c-1=0
Ta có: abc-ab-bc-ac+a+b+c-1=0
\(\Leftrightarrow\left(abc-ab\right)-\left(bc-b\right)-\left(ac-a\right)+\left(c-1\right)=0\)
\(\Leftrightarrow ab\left(b-1\right)-b\left(c-1\right)-a\left(c-1\right)+\left(c-1\right)=0\)
\(\Leftrightarrow b\left(c-1\right)\left(a-1\right)-\left(c-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)
\(A=(-\infty;-3]\cup[-4;+\infty)\)
B=(-vô cực,2) giao (5;+vô cực)
1: A hợp B=(-vô cực,2) giao [-4;+vô cực]=R
A\B=[-4;5]
2: (B\A) giao N=(-3;2) giao N=[2;+vô cực)
a: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó: ΔABC vuông tại C
Xét a4 - 2a3 \(\ge8a-16\)
<=> a4 -2a3 -8a +16\(\ge0\)
<=> (a4 - 2a3) - 8 (a-2) \(\ge0\)
<=> \(a^3\left(a-2\right)-8\left(a-2\right)\ge0\)
<=> \(\left(a-2\right)\left(a^3-8\right)\ge0\)
<=> \(\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\) (luôn đúng)
Tương tự => \(\left\{{}\begin{matrix}b^4-2b^3\ge8b-16\\c^4-2c^3\ge8c-16\end{matrix}\right.\)
<=> \(a^4+b^4+c^4-2\left(a^3+b^3+c^3\right)\ge8\left(a+b+c\right)-48=0\)
<=> \(a^4+b^4+c^4\ge2\left(a^3+b^3+c^3\right)\)
Dấu "=" <=> a=b=c=2
Ta có bđt \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)(1)
Chứng minh:
Áp dụng bđt cosi cho 3 số dương:
\(x+y+z\ge3\sqrt[3]{xyz}\left(2\right)\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge3\sqrt[3]{\dfrac{1}{xyz}}\)(3)
Từ (2),(3)\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\dfrac{1}{xyz}}=9\)
Vậy bđt (1) đã chứng minh
Áp dụng bđt (1), ta có \(\left[\left(2a+b\right)+\left(2b+c\right)+\left(2c+a\right)\right]\left(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\right)\ge9\Leftrightarrow3\left(a+b+c\right)\left(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\right)\ge9\Leftrightarrow3.1.\left(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\right)\ge9\Leftrightarrow\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\ge3\)Vậy nếu a+b+c=1 thì \(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\ge3\)