tìm gtnn;
a, A= 3y2 cộng 6y cộng 5.
b, B= [x cộng 1].[x2 cộng 4x cộng 5].[x cộng 5]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: A =| x - 3 | + 50 \(\ge50\)
\(\Leftrightarrow MinA=50.\)Dấu '=' xảy ra khi và chỉ khi x-3 = 0 \(\Leftrightarrow\) x=3
b, Ta có: B =2014 - | x + 8 | \(\ge2014\)
\(\Leftrightarrow MaxB=2014.\)Dấu '=' xảy ra khi và chỉ khi x+8=0\(\Leftrightarrow\) x=-8
CÂU NÀY PHẢI TÌM GTLN NHA BN! GTNN KO CÓ ĐÂU!
c, Ta có: C = | x-100 | + | y +2014 | - 2015 \(\ge-2015\)
\(\Leftrightarrow MinC=-2015.\)Dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-100=0\\y+2014=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=100\\y=-2014\end{cases}}\)
Ta có: \(\left|x-2\right|\ge x-2\)
\(\left|x-3\right|\ge0\)
\(\left|x-4\right|=\left|4-x\right|\ge4-x\)
\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2\ge0\\x-3=0\\x-4\le0\end{cases}\Rightarrow}x=3\)
a, Vì |x-3| \(\ge\)0
=>A=|x-3|+50\(\ge\)50
Dấu "=" xảy ra khi x=3
Vậy GTNN của A = 50 khi x=3
b, Vì |x+8| \(\ge0\)
=>B=2014-|x+8|\(\le2014\)
Dấu "=" xảy ra khi x=-8
Vậy GTLN của B = 2014 khi x=-8
c, Vì \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+2014\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+2014\right|\ge0\)
\(\Rightarrow C=\left|x-100\right|+\left|y+2014\right|-2015\ge-2015\)
Dấu "=" xảy ra khi x=100,y=-2014
Vậy GTNN của C=-2015 khi x=100,y=-2014
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Lời giải:
Sử dụng BĐT sau:
Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:
$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$
$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)
$\Rightarrow A\geq 4+0=4$
Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$
Hay khi $x=2020$
\(A=3y^2+6y+5\)
\(\Leftrightarrow A=3\left(y^2+2y+1\right)+2\)
\(\Leftrightarrow A=3\left(y+1\right)^2+2\ge2\) Với \(\forall y\in R\)
Dấu "=" xảy ra khi y = -1
Vậy GTNN của A là 2 khi y = -1
\(B=\left(x+1\right)\left(x^2+4x+5\right)\left(x+5\right)\)
\(\Leftrightarrow B=\left(x^2+6x+5\right)\left(x^2+4x+5\right)\)
\(\Leftrightarrow B=\left(t+x\right)\left(t-x\right)=t^2-x^2\)
\(\Leftrightarrow B=x^4+10x^2+25-x^2=x^4+9x^2+25\)
\(\Leftrightarrow B=\left(x^2+\dfrac{9}{2}\right)^2+\dfrac{19}{4}\ge\left(\dfrac{9}{2}\right)^2+\dfrac{19}{4}=25\) Với \(\forall x\in R\)
Dấu "=" xảy ra khi x = 0
Vậy GTNN Của B là 25 khi x = 0 .
x2 + 5x = t nhé !!!