Cho biểu thức
M=\(\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a}-1}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
a; chứng minh M>4
b; Với những giá trị nào của a thì N=6/M nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện : a> 0 ; a khác 1
\(A=\frac{\left(\sqrt{a}\right)^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}\right)^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}+\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{2a+2}{a-1}\right)\)
\(A=\frac{2\sqrt{a}}{\sqrt{a}}+\frac{2\left(a+1\right)}{\sqrt{a}}=2+\frac{2\sqrt{a}\left(a+1\right)}{a}\)
a: \(A=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)
\(=2+\dfrac{2a+2}{\sqrt{a}}=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)
b: Để A=7 thì \(2a-5\sqrt{a}+2=0\)
\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(2\sqrt{a}-1\right)=0\)
=>a=4 hoặc a=1/4
a. ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(A=\left(\frac{\left(\sqrt{a}\right)^2-1}{2\sqrt{a}}\right)^2\cdot\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ =\left(\frac{a-1}{2\sqrt{a}}\right)^2\cdot\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\\ =\frac{\left(a-1\right)^2}{4a}\cdot\frac{-4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\\ =-\frac{a-1}{\sqrt{a}}=\frac{1-a}{\sqrt{a}}\)
b. Để A < 0 thì 1 - a <0 ( vì mẫu \(\sqrt{a}\ge0\forall a\) ) <=> -a < -1 <=> a > 1
a) đkxđ: \(a>0;a\ne1\)
Ta có:
\(P=\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(1-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
\(P=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}-1}{\sqrt{a}}.\frac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(P=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}+\frac{2a+2}{\left(\sqrt{a}+1\right)\sqrt{a}}\)
\(P=\frac{2\sqrt{a}\left(\sqrt{a}+1\right)+2a+2}{\left(\sqrt{a}+1\right)\sqrt{a}}\)
\(P=\frac{2a+2\sqrt{a}+2a+2}{\left(\sqrt{a}+1\right)\sqrt{a}}\)
\(P=\frac{4a+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\sqrt{a}}\)
b) \(P=7\)
\(\Leftrightarrow\frac{4a+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\sqrt{a}}=7\)
\(\Leftrightarrow4a+2\sqrt{a}+2=7a+7\sqrt{a}\)
\(\Leftrightarrow3a+5\sqrt{a}-2=0\)
\(\Leftrightarrow\left(3a-\sqrt{a}\right)+\left(6\sqrt{a}-2\right)=0\)
\(\Leftrightarrow\left(3\sqrt{a}-1\right)\sqrt{a}+2\left(3\sqrt{a}-1\right)=0\)
\(\Leftrightarrow\left(3\sqrt{a}-1\right)\left(\sqrt{a}+2\right)=0\)
Mà \(\sqrt{a}+2\ge2\left(\forall a\right)\)
\(\Rightarrow3\sqrt{a}-1=0\Leftrightarrow3\sqrt{a}=1\)
\(\Leftrightarrow\sqrt{a}=\frac{1}{3}\Rightarrow a=\frac{1}{9}\)
ĐKXĐ: ...
\(P=\left(\frac{\sqrt{a}-1}{a+\sqrt{a}+1}-\frac{1-3\sqrt{a}+a}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{1}{\sqrt{a}-1}\right):\frac{a+1}{1-\sqrt{a}}\)
\(=\left(\frac{\left(\sqrt{a}-1\right)^2-1+3\sqrt{a}-a-\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{1-\sqrt{a}}{a+1}\right)\)
\(=\frac{-\left(a+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\frac{-\left(\sqrt{a}-1\right)}{\left(a+1\right)}=\frac{1}{a+\sqrt{a}+1}\)