K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

c: Xét tứ giác ABMH có 

I là trung điểm của AM

I là trung điểm của BH

Do đó: ABMH là hình bình hành

Suy ra: AH//BC

30 tháng 10 2021

a, Vì I là trung điểm AC và MN nên AMCN là hbh

b, Vì M,I là trung điểm BC,AC nên MI là đtb tg BAC \(\Rightarrow MI=\dfrac{1}{2}AB\)

Vì I là trung điểm MN nên \(MI=\dfrac{1}{2}MN\)

Do đó \(MN=AB\)

c, Áp dụng định lí Menelaus cho tam giác ABM và cát tuyến DOC

\(\dfrac{DA}{DB}\cdot\dfrac{CB}{CM}\cdot\dfrac{OM}{OA}=1\\ \Rightarrow\dfrac{DA}{DB}\cdot2\cdot1=1\\ \Rightarrow\dfrac{DA}{DB}=\dfrac{1}{2}\)

Do đó \(DB=2AD\)

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét tứ giác ABMH có 

I là trung điểm của AM

I là trung điểm của BH

Do đó: ABMH là hình bình hành

Suy ra; AH//BM

hay AH//BC

27 tháng 12 2018

A B C M

a) + M là trung điểm của BC (gt)

\(\Rightarrow\)MB = MC ( tính chất)                                                       (1)

Xét tam giác ABM và tam giác ACM có: AM chung                 (2)

AB = AC (gt)                                                                             (3)

(1)(2)(3) \(\Rightarrow\)Tam giác ABM = tam giác ACM (c-c-c)

Câu b mk thấy vô lí vì BC và AC k trùng nhau mà M là trung điểm của BC nên k thể là trung điểm của AC

27 tháng 12 2018

Tam giác ABC cân tại A (do AB = AC)

M là trung điểm BC

=> AM là trung tuyến, phân giác, trung trực của tam giác ABC

a) Chứng minh tam giác ABM= ACM

Xét tam giác ABM và tam giác AMC, có

- AB = AC

- AM chung

- MB = MC

=>  tam giác ABM= ACM (đpcm)

b) Gọi M là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. CM tam giác AIN=CIM suy ra AN//BC

Bạn viết sai đề bài thì phải, theo mình hiểu thì đề đúng phải là:

Gọi I là trung điểm của AC. Trên tia MI lấy N sao cho I là trung điểm MN. Chứng minh tam giác AIN=CIM suy ra AN//BC

Xét tam giác AIN và tam giác CIM, có

- AI = CI (I là trung điểm AC)

- IM = IN (I là trung điểm MN)

- góc I đối nhau

==> tam giác AIN = tam giác CIM (đpcm)

Xét tứ giác AMCN, có

- 2 đường chéo của tứ giác AMCN cắt nhau tại I

- I vừa là trung điểm AC, vừa là trung điểm MB

=> tứ giác AMNC là hình bình hành (định lý hình bình hành có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> AN // MC, mà MC nằm trên BC

=> AN // BC (đpcm)

c) Chứng minh AN vuông góc với AM

Ta có:

- AM vuông góc BC (AM là phân giác, trung trực, trung tuyến của tam giác ABC), nên AM vuông góc BC

- AN // BC (chứng minh trên)

=> AN vuông góc AM (đpcm)

Giúp với ạ mai mik nộp r ạBài 1: Cho tam giác ABC có M là trung điểm của BC và I là trung điểm của AC. Gọi N là điểm đối xứng với M qua I.      a)C/m tứ giác AMCN là hình bình hành.               b) C/m   AB = MN.c)Gọi O là trung điểm của AM và D là giao điểm của CO và AB. Chứng minh rằng DB = 2AD.Bài 4:  Cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E và F sao cho AE = EF = FC.a)     Tứ giác BEDF là hình gì? Vì sao?b)    ...
Đọc tiếp

Giúp với ạ mai mik nộp r ạ

Bài 1: Cho tam giác ABC có M là trung điểm của BC và I là trung điểm của AC. Gọi N là điểm đối xứng với M qua I.

      a)C/m tứ giác AMCN là hình bình hành.         

      b) C/m   AB = MN.

c)Gọi O là trung điểm của AM và D là giao điểm của CO và AB. Chứng minh rằng DB = 2AD.

Bài 4:  Cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E và F sao cho AE = EF = FC.

a)     Tứ giác BEDF là hình gì? Vì sao?

b)     Tia DF cắt BC tại M. Chứng minh: DF = 2FM.

c)     Tia BE cắt AD tại N, hai đường chéo AC và BD cắt nhau tại O. Chứng minh: M đối xứng với N qua điểm O.

Bài 5: Cho hình thang cân ABCD (AB//CD, CD =2AB) .Gọi M là trung điểm của DC.

  a)Tứ giác ABCM là hình gì ?Vì sao?

  b) Từ  D và C kẻ đường thẳng vuông góc với DC cắt AD và BC lần lượt tại H và I. Chứng minh tứ giác IHCD là hình chữ nhật

  c)Gọi K là giao điểm của DH và CI ,Kẻ KN⊥ IH. Chứng minh 3 điểm N, K, M thẳng hàng.

Bài 6: Cho hình bình hành ABCD. Gọi I, K lần lượt là trung điểm của CD, AB. Đường chéo BD cắt CK và CA lần lượt ở M và O.

  a) Chứng minh tứ giác AKCI là hình bình hành.

  b) Chứng minh ba điểm K, O, I thẳng hàng.

  c) Chứng minh AI = 3. KM.

d) Đường thẳng AM cắt BC tại E . Tính tỉ số \(\dfrac{EI}{BD}\) .

1
30 tháng 10 2021

Bài 1: 

a: Xét tứ giác AMCN có 

I là trung điểm của AC

I là trung điểm của MN

Do đó: AMCN là hình bình hành

*Tự vẽ hình 

a) Xét tam giác ABM và ACM, có :

AB=AC(GT)

AM-cạnh chung

BM=MC(GT)

-> Tam giác ABM=ACM(c.c.c)

b) Do tam giác ABM=ACM (cmt)

-> \(\widehat{AMB}=\widehat{AMC}=90^o\)

-> AM vuông góc BC

c) Xét tam giác AEI và MBI, có :

\(\widehat{EAI}=\widehat{BMI}=90^o\)

\(\widehat{AIE}=\widehat{BIM}\left(đđ\right)\)

AI=IM(GT)

-> tam giác AEI=MBI(g.c.g)

-> AE=BM ( đccm)

d) Chịu. Tự làm nhe -_-'

#Hoctot

11 tháng 1 2021

bạn tự vẽ hình

a, xét tam giác ABM và tam giác ACM có :

AB=AC (gt)

MB=MC (gt)

AM là cạch chung

suy ra tam giác ABM =tam giác ACN (c.c.c)

b, Vì tam giác ABM = tam giác ACN (câu a)

suy ra góc M1= góc M2 (2 góc tương ứng)

mà M1+M2=180 ( 2 góc kề bù)

suy ra : M1=M2= 90 

suy ra AM vuông góc BC

c, Vì tam giác ABM = tam giác ACM (câu a)

suy ra : A1=A2 ( 2 góc tương ứng)

suy ra: AM là phân giác góc BAC

5 tháng 2 2017

xét tam giác amb và tam giác amc có

AB=AC(GT)

BM=MC(GT)

AM CHUNG(GT)

=> TAM GIÁC AMB = TAM GIÁC AMC (CCC)

AI K MK MK K LAI 3 K

13 tháng 12 2021

a) Xét ΔABCΔABC có:

AB=AC(gt)AB=AC(gt)

=> ΔABCΔABC cân tại A.

=> ˆABC=ˆACBABC^=ACB^ (tính chất tam giác cân).

Ta có:

{ˆABM+ˆABC=1800ˆACN+ˆACB=1800{ABM^+ABC^=1800ACN^+ACB^=1800 (các góc kề bù).

Mà ˆABC=ˆACB(cmt)ABC^=ACB^(cmt)

=> ˆABM=ˆACN.ABM^=ACN^.

Xét 2 ΔΔ ABMABM và ACNACN có:

AB=AC(gt)AB=AC(gt)

ˆABM=ˆACN(cmt)ABM^=ACN^(cmt)

BM=CN(gt)BM=CN(gt)

=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)

=> AM=ANAM=AN (2 cạnh tương ứng).

b) Theo câu a) ta có AM=AN.AM=AN.

=> ΔAMNΔAMN cân tại A.

=> ˆM=ˆNM^=N^ (tính chất tam giác cân)

Xét 2 ΔΔ vuông BMEBME và CNFCNF có:

ˆMEB=ˆNFC=900(gt)MEB^=NFC^=900(gt)

BM=CN(gt)BM=CN(gt)

ˆM=ˆN(cmt)M^=N^(cmt)

=> ΔBME=ΔCNFΔBME=ΔCNF (cạnh huyền - góc nhọn)

6 tháng 12 2016

đợi mình 5 phút

6 tháng 12 2016

                                                                                  Giải

a) vì m la trung diểm của BC => BM=MC

Xét tam giac BAM va tam giac MAC có:

AB=AC(dề bài cho)

BM=MC(Chung minh tren)

AM la cạnh chung(de bai cho)

=>Tam giác BAM=tam giac MAC(c.c.c)

b)từ trên

=>góc BAM=góc MAC(hai goc tuong ung)

Tia AM nam giua goc BAC (1)

goc BAM=goc MAC(2)

từ (1) va (2)

=>AM la tia phan giac cua goc BAC

c)Còn nữa ......-->

7 tháng 4 2020

Bạn kiểm tra lại đề bài nhé!

Câu a) 62+122\(\ne\)152 nên tam giác ABC không thể vuông 

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

b: Xét ΔADH và ΔAEH có

AD=AE

góc DAH=góc EAH

AH chung

=>ΔADH=ΔAEH

Xét ΔABC có AD/AB=AE/AC

nên DE//BC