cho \(\Delta ABC\)nhọn ( AB < AC ) ; đường cao AH ; D , E , F lần lượt là trung điểm của AB , AC , BC ; Tính SBDEF và SDEFH biết HB=4cm , HC=6cm , AH=8cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có
góc A chung
=>ΔAMB đồng dạng vơi ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN; AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC
a) Xét ΔAHB vuông tại H và ΔADH vuông tại D có
\(\widehat{DAH}\) chung
Do đó: ΔAHB\(\sim\)ΔADH(g-g)
a) Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được
\(AC^2=AH^2+CH^2\)
Ta có: \(AB^2+AC^2=BH^2+CH^2+AH^2+AH^2=BH^2+CH^2+2\cdot AH^2\)
b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
Áp dụng định lí pytago vào ΔACH vuông tại H, ta được
\(AC^2=AH^2+HC^2\)
Ta có: \(AB^2-AC^2=AH^2+BH^2-AH^2-CH^2=BH^2-CH^2\)(1)
Áp dụng định lí pytago vào ΔEHB vuông tại H, ta được
\(EB^2=EH^2+HB^2\)
Áp dụng định lí pytago vào ΔEHC vuông tại H, ta được
\(EC^2=EH^2+HC^2\)
Ta có: \(EB^2-EC^2=EH^2+BH^2-EH^2-CH^2=BH^2-CH^2\)(2)
Từ (1) và (2) suy ra \(AB^2-AC^2=EB^2-EC^2\)(đpcm)
a)
+ Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AB^2=AH^2+BH^2\) (định lí Py - ta - go) (1).
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AC^2=AH^2+CH^2\) (định lí Py - ta - go) (2).
Từ (1) và (2) \(\Rightarrow AB^2+AC^2=\left(AH^2+AH^2\right)+\left(BH^2+CH^2\right)\)
\(\Rightarrow AB^2+AC^2=AH^2+AH^2+BH^2+CH^2\)
\(\Rightarrow AB^2+AC^2=2AH^2+BH^2+CH^2\)
Hay \(AB^2+AC^2=BH^2+CH^2+2AH^2\left(đpcm\right).\)
Chúc bạn học tốt!
a: Xét ΔAEB và ΔAEF có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)
AB=AF
Do đó: ΔAEB=ΔAEF
b: Sửa đề: Chứng minh MB=MF
Ta có: ΔABE=ΔAFE
=>AB=AF
=>ΔABF cân tại A
Ta có: ΔABF cân tại A
mà AM là đường phân giác
nên M là trung điểm của BF và AM\(\perp\)BF
M là trung điểm của BF nên MB=MF
AM\(\perp\)BF tại M
=>AE\(\perp\)BF tại M
c: ta có: ΔABE=ΔAFE
=>\(\widehat{ABE}=\widehat{AFE}\)
Ta có: \(\widehat{ABE}+\widehat{DBE}=180^0\)(hai góc kề bù)
\(\widehat{AFE}+\widehat{CFE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABE}=\widehat{AFE}\)
nên \(\widehat{EBD}=\widehat{EFC}\)
Ta có: AB+BD=AD
AF+FC=AC
mà AB=AF và AD=AC
nên BD=FC
Xét ΔEBD và ΔEFC có
EB=EF
\(\widehat{EBD}=\widehat{EFC}\)
BD=FC
Do đó: ΔEBD=ΔEFC
=>ED=EC
=>E nằm trên đường trung trực của DC(1)
ta có: AD=AC
=>A nằm trên đường trung trực của DC(2)
Ta có: KD=KC
=>K nằm trên đường trung trực của DC(3)
Từ (1),(2),(3) suy ra A,E,K thẳng hàng
a, Xét tg ABH vuông tại H có đg cao HE
\(AE\cdot AB=AH^2\left(1\right)\)
Xét tg ACH vuông tại H có đg cao HF
\(AF\cdot AC=AH^2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AE\cdot AB=AF\cdot AC\)
b, Xét tg AEF và tg ACB có
\(AE\cdot AB=AF\cdot AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\\ \widehat{A}.chung\)
Do đó \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)