K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2020

a) Ta có \(\widehat{HEC}=\widehat{HDC}=90^o\)

suy ra E và D thuộc đường tròn đk HC

=> tứ giác EHDC nt (đpcm)

b) Tứ giác EHDC nt => \(\widehat{HCE}=\widehat{HDE}\)(2 góc nt cùng chắn 1 cung)

Tứ giác ABDE có \(\widehat{BDA}=\widehat{BEA}=90^o\) => tứ giác nt

=> \(\widehat{ADE}=\widehat{ABE}\) (2 góc nt cùng chắn 1 cung)

=> \(\widehat{HCE}=\widehat{ABE}\)

Lai có tứ giác ABCK nt => \(\widehat{ABE}=\widehat{ACK}\) (2 góc nt cùng chắn 1 cung)

=> \(\widehat{HCE}=\widehat{ECK}\)

=> CE là pgiác của \(\widehat{HCK}\)

tam giác HCK có CE vừa là đường cao vừa là đg pgiác

=> tam giác cân (ĐPCM)

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

14 tháng 1 2019

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

7 tháng 6 2021

a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)

=> Tứ giác BCFK nội tiếp

b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )

mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)

=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị

=> KF//DE

17 tháng 4 2017

Đáp án là C

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CAD=góc NBC

=>1/2*sđ cung CD=1/2*sđ cung CE

=>CD=CE
c: góc BHM=góc BCN=1/2*sđ cung BA

góc BDH=1/2*sđ cung BA

=>góc BHD=góc BDH

=>ΔBHD cân tại B

Xét tứ giác BCDE có 

\(\widehat{BDC}=\widehat{BEC}=90^0\)

hay BCDE là tứ giác nội tiếp