K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
18 tháng 1 2021

O A B M I

Gọi I là trung điêm OM

do đó ta có tính chất của trung tuyến ứng với cạnh huyền lầ

 \(IO=IA=IM=\frac{1}{2}OM=\frac{1}{2}.2R=R\)

Xét tam giác IOA có \(IO=OA=AI=R\Rightarrow\)tam giác IOA đều nên IOA = 60 độ

chứng minh tương tự ta sẽ có góc IOB=60 độ 

nên AOB=AOI+IOB=120 độ

16 tháng 2 2021

AOB=120

1: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc ABB

=>ME*MO=MA^2

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA^2=MC*MD=MH*MO

18 tháng 1 2021

Từ gt => \(\Delta OAB\)  vuông tại B và \(\Delta OAC\) vuông tại C

\(\Rightarrow\widehat{OAB}+\widehat{AOB}=90^o,\widehat{OAC}+\widehat{AOC}=90^o\)

\(\Rightarrow\left(\widehat{OAB}+\widehat{OAC}\right)+\left(\widehat{AOB}+\widehat{AOC}\right)=180^O\)

Hay \(\widehat{BAC}+\widehat{BOC}=180^O\Rightarrow\widehat{BOC}=180^o-\alpha\)

\(\Rightarrow\) số đo \(\widebat{BmC}=180^o-\alpha\)  và số đo \(\widebat{BnC=180^o+\alpha}\)

22 tháng 1 2021
21 tháng 12 2021

a: AB=20

góc AOB=180-60=120 độ

S OAB=1/2*OA*OB*sinAOB=\(R^2\cdot\dfrac{\sqrt{3}}{4}\)

S q OAB=\(pi\cdot R^2\cdot\dfrac{120}{360}=pi\cdot R^2\cdot\dfrac{1}{3}\)

=>\(Svp=R^2\left(pi\cdot\dfrac{1}{3}-\dfrac{\sqrt{3}}{4}\right)\)

 

19 tháng 3 2022

a, Xét tam giác MAD và tam giác MCA có 

^M _ chung 

^MDA = ^MAC ( cùng chắn cung CA ) 

Vậy tam giác MAD ~ tam giác MCA (g.g) 

\(\dfrac{MA}{MC}=\dfrac{MD}{MA}\Rightarrow MA^2=MD.MC\)(1) 

b, Vì MA là tiếp tuyến đường tròn (O) với A tiếp điểm 

Lại có OA = OB = R ; MA = MB ( tc tiếp tuyến cắt nhau ) 

=> OM là trung trực đoạn BA 

Xét tam giác MAO đường cao AH ta có 

\(MA^2=MO.MH\)(2) 

Từ (1) ; (2) suy ra \(MO.MH=MD.MC\)

 

25 tháng 11 2021

Xét đường tròn (O;R) có A, B \(\in\left(O;R\right)\)\(\Rightarrow OA=OB=R\)

Mà \(R=3cm\left(gt\right)\Rightarrow OA=OB=3cm\)

Vì MA là tiếp tuyến tại A của (O) (gt) \(\Rightarrow MA\perp OA\)tại A \(\Rightarrow\Delta OMA\)vuông tại A

\(\Rightarrow OM^2=OA^2+AM^2\left(đlPytago\right)\)\(\Rightarrow AM^2=OM^2-OA^2\Rightarrow AM=\sqrt{OM^2-OA^2}=\sqrt{5^2-3^2}=\sqrt{25-9}=\sqrt{16}=4\left(cm\right)\)

Xét đường tròn (O) có hai tiếp tuyến tai A và B cắt nhau tại M (gt) \(\Rightarrow MA=MB\)(tính chất hai tiếp tuyến cắt nhau)

Mà \(MA=4cm\left(cmt\right)\Rightarrow MB=4cm\)

Chu vi tứ giác AMBO là \(MA+MB+OA+OB=4+4+3+3=14\left(cm\right)\)

Gọi H là giao điểm của OM và AB.

Ta có \(MA=MB\left(cmt\right)\)\(\Rightarrow\)M nằm trên đường trung trực của AB. (1)

Lại có \(OA=OB\left(=R\right)\)\(\Rightarrow\)O nằm trên đường trung trực của AB. (2)

Từ (1) và (2) \(\Rightarrow\)OM lả đường trung trực của AB. \(\Rightarrow\hept{\begin{cases}AH=BH=\frac{AB}{2}\\AH\perp OM\left(H\in OM\right)\end{cases}}\)

\(\Rightarrow\)AH là đường cao của \(\Delta OMA\)

Xét \(\Delta OMA\)vuông tại A có đường cao AH (cmt) \(\Rightarrow AH.OM=MA.OA\left(htl\right)\)

\(\Rightarrow AH=\frac{MA.OA}{OM}=\frac{4.3}{5}=\frac{12}{5}=2,4\left(cm\right)\)

\(\Rightarrow AB=2AH=2.2,4=4,8\left(cm\right)\)

Xét tiếp \(\Delta OMA\)vuông tại A có đường cao AH \(\Rightarrow MA^2=MH.MO\left(htl\right)\)

\(\Rightarrow MH=\frac{MA^2}{MO}=\frac{4^2}{5}=\frac{16}{5}=3,2\left(cm\right)\)

Diện tích \(\Delta MAB\)là \(S_{MAB}=\frac{1}{2}AB.MH=\frac{1}{2}.4,8.3,2=7,68\left(cm^2\right)\)