Cho tam giác MNP cân tại M. NA, PB lần lượt là các phân giác Góc N và Góc P (A thuộc MB; P thuộc MN)
Chứng Minh tam Giác MPB = tam giác MNA
vẽ hộ hình luôn ạ và chứng minh luôn ạ
Thank.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B M N P
Ta có:
NA là tia phân giác \(\widehat{MNP}\)=>\(\widehat{ANM}=\frac{\widehat{MNP}}{2}\)
PB là tia phân giác \(\widehat{MPN}\)=>\(\widehat{BPM}=\frac{\widehat{MPN}}{2}\)
Mà \(\widehat{MNP}=\widehat{MPN}\)(tam giác MNP cân tại M)
=>\(\widehat{ANB}=\widehat{MPB}\)
Xét tam giác MAN và tam giác MBP có:
Góc M chung
MN=MP(tam giác MNP cân tạ M)
Góc ANM=góc MPB(cmt)
=>tam giác MPB=tam giác MNA
a: góc KPM=góc KPB+góc MPN=45 độ+góc BNH
góc HMN=góc HMA+góc NMA=45 độ+góc HMA
mà góc BNH=góc HMA
nên góc KPM=góc HMN
b: ΔMNP vuông cân tại M
mà MA là trung tuyến
nên MA=AP
=>ΔMAP cân tại M
a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có
NA chung
NA=ND(gt)
Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)
mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)a: Xét ΔBAM vuông tại A và ΔCAN vuông tại A có
BA=CA
góc B=góc C
=>ΔBAM=ΔCAN
b: ΔBAM=ΔCAN
=>AM=AN
góc MAB=90 độ
góc B=30 độ
=>góc AMN=60 độ
=>ΔAMN đều
góc NAB=120-90=30 độ=góc B
=>ΔNAB cân tại N
góc MAC=120-90=30 độ=góc C
=>ΔMAC cân tại M
GiẢi
a , Xét tam giác MNA và tam giác DNA có :
NM=ND (GT)
Góc NMA = góc NDA =90 độ
NA là cạnh chung
=> Tam giác MNA = tam giác DNA (c.g.c)
=> Góc MNA =góc DNA ( hai góc tương ứng)
=. NA là tia phân giác của góc MNP
b, Tam giác MND là tâm giác đều vì mỗi góc đều có só đo = 60 độ
d,Xetstam giác MBA và tam giác DPA có :
BM=DP(GT)
góc MAB = góc DPA ( đối đỉnh)
MA=DA (hai cạnh tương ứng của tam giác MNA=tam giác DNA)
=> Tam giác MBA = tam giác DPA (c.g.c)
=> AB=PA ( hai cạnh tương ứng)
=> Tam giác APB cận tại A
Xét tam giác PAB ta có:
PA = PB (gt)
-> tam giác PAB cân tại P
-> góc PAB = góc PBA ( tính chất tam giác cân )
Xét tam giác MNP cân tại P , ta có:
góc M= góc N ( tính chất tam giác cân )
Xét tam giác PAB ta có:
Góc P+ PAB + PBA = 180 độ ( định lí tổng 3 góc trong tam giác )
mà PAB=PBA (cmt)
-> PAB = \(\frac{180-P}{2}\left(1\right)\)
Xét tam giác PMN, ta có:
P + M +N = 180 độ ( định lí tổng 3 góc trong tam giác )
-> M = \(\frac{180-P}{2}\left(2\right)\)
Từ (1) và (2) -> PAB = M
mà PAB và M là 2 góc đồng vị
-> AB // MN ( dấu hiệu nhận biết 2 đường thẳng song song)
Xét tứ giác MABN ,ta có:
AB // MN
-> MABN là hình thang có 2 góc M và N kề 1 đáy bằng nhau
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)
\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)
\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)
\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)
b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)
△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)
c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\); \(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)
\(\Rightarrow\)△MDK cân tại M