Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.Gọi M là trung điểm của SA và E là trung điểm của SB; P là điểm thuộc cạnh SC sao cho SC=3SP. Tìm giao điểm của DB và mặt phẳng (MPE)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (P) là mặt phẳng qua M, song song DE và SC
Gọi O là giao điểm AC, BD \(\Rightarrow\) O là trung điểm AC
\(\Rightarrow\) OM là đường trung bình tam giác SAC
\(\Rightarrow OM||SC\Rightarrow O\in\left(P\right)\)
Trong mp (SBD), gọi F là trung điểm BE \(\Rightarrow OF\) là đường trung bình tam giác BDE
\(\Rightarrow OF||DE\Rightarrow F\in\left(P\right)\)
Trong mp (SBC), qua F kẻ đường thẳng song song SC cắt BC tại G
\(\Rightarrow G\in\left(P\right)\)
Trong mp (ABCD), nối GO kéo dài cắt AD tại H
\(\Rightarrow H\in\left(P\right)\)
\(\Rightarrow\) Thiết diện của (P) và chóp là tứ giác MFGH (và tứ giác này không có điều gì đặc biệt)
Qua S kẻ đường thẳng d song song AD (và BC)
Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC
\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)
Đáp án B
Dễ thấy M N | | A B nên mặt phẳng (CMN) cắt mặt phẳng (ABCD) theo giao tuyến là đường thẳng qua C và song song với AB.
Vậy giao tuyến của (MNC) và (ABD) là đường thẳng CD.