K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

mik làm tắt thôi có gì bạn trình bày lại 

a,trong hình thang ABCD cân thì 2 đường chéo AC=BD

và 2 cạnh bên bằng nhau AD=BC

mà DC chung=>\(\Delta ADC=\Delta BDC\left(c.c.c\right)\)

=>\(\angle\left(D1\right)=\angle\left(C1\right)\)\(=>\Delta ODC\) cân tại O=>OD=OC

mà \(AB//CD=>\left\{{}\begin{matrix}\angle\left(ABO\right)=\angle\left(D1\right)\\\angle\left(BAO\right)=\angle\left(C1\right)\end{matrix}\right.\)(so le trong)

\(=>\angle\left(ABO\right)=\angle\left(BAO\right)\)\(=>\Delta OAB\) cân tại O=>OA=OB

b, do \(\Delta OAB\) cân tại O có OM là trung tuyến nên cũng là đường cao

tương tự thì ON cũng là đường cao

\(=>\left\{{}\begin{matrix}OM\perp AB\\ON\perp CD\end{matrix}\right.\) mà \(AB//CD=>M;N;O\) thẳng hàng

12 tháng 11 2021

Xét ΔACD và ΔBDC có 

AC=BD

AD=BC

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ODC}=\widehat{OCD}\)

hay OC=OD

a: góc OAB=góc ODC

góc OBA=góc BCD

mà góc ODC=góc BCD

nên góc OAB=góc OBA

=>ΔOBA cân tại O

b: Xét ΔABD và ΔBAC có

BA chung

BD=AC

AD=BC

=>ΔABD=ΔBAC

c: ΔABD=ΔBAC

=>góc ABD=góc BAC

=>EA=EB

=>EC=ED

d: OA+AD=OD

OB+BC=OC

mà OA=OB và AD=BC

nên OD=OC

=>OE là trung trực của DC

=>O,E,trung điểm của DC thẳng hàng

15 tháng 7 2023

a) Chứng minh ΔOAB cân tại O:

Vì AB//CD, ta có ∠ABO = ∠CDO (do là góc đồng quy của hai đường thẳng AB và CD).

Tương tự, vì AB//CD, ta có ∠BAO = ∠DCO (do là góc đồng quy của hai đường thẳng AD và BC).

Do đó, ΔOAB có hai góc bằng nhau với ΔCDO, nên ΔOAB cân tại O.

b) Chứng minh ΔABD = ΔBAC:

Vì AB//CD, ta có ∠ABD = ∠BAC (do là góc đồng quy của hai đường thẳng AB và CD).

Tương tự, vì AB//CD, ta có ∠ADB = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).

Do đó, ΔABD có hai góc bằng nhau với ΔBAC, nên ΔABD = ΔBAC.

c) Chứng minh EC = ED:

Vì AC là đường chéo của hình thang ABCD, nên AC chia BD thành hai đoạn bằng nhau.

Do đó, AE = CE và DE = BE.

Vì ΔAEB và ΔCEB có hai cạnh bằng nhau (AE = CE và BE = DE) và góc AEB = góc CEB (do AB//CD), nên ΔAEB = ΔCEB.

Từ đó, ta có EC = ED.

d) Chứng minh O, E và trung điểm của DC thẳng hàng:

Gọi F là trung điểm của DC. Ta cần chứng minh OF//AB.

Vì F là trung điểm của DC, nên DF = FC.

Vì AB//CD, ta có ∠FDC = ∠BAC (do là góc đồng quy của hai đường thẳng AD và BC).

Tương tự, vì AB//CD, ta có ∠FCD = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).

Do đó, ΔFDC có hai góc bằng nhau với ΔBAC, nên ΔFDC = ΔBAC.

Từ đó, ta có OF//AB.

Vậy, O, E và trung điểm của DC thẳng hàng.

 

a: Xét ΔACD và ΔBDC có

AC=BD

AD=BC

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: OC+OA=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

a: XétΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

b: OE là phân giác của góc COD trong ΔCOD

nên EC/ED=OC/OD=OA/OB

Bài 5: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

29 tháng 9 2019

help meeee