Cho góc xOy. Trên tia phân giác Ot của góc xOy lấy điểm I (I ≠ O). Gọi A, B lần lượt là các điểm trên tia Ox và Oy sao cho OA = OB (O ≠ A; O ≠ B).
a) Chứng minh rằng Δ OIA = Δ OIB.
b) Chứng minh tia Ot là đường trung trực của AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔOIA và ΔOIB có
OA=OB(gt)
\(\widehat{AOI}=\widehat{BOI}\)(OI là tia phân giác của \(\widehat{AOB}\))
OI chung
Do đó: ΔOIA=ΔOIB(c-g-c)
a: Xét ΔOMA và ΔOMB có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
OA=OB
Do đó: ΔOMA=ΔOMB
a) Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OA=OB(gt)
\(\widehat{AOH}\) chung
Do đó: ΔOHA=ΔOKB(cạnh huyền-góc nhọn)
b)
Xét ΔOAB có OA=OB(gt)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Xét ΔAHB vuông tại H và ΔBKA vuông tại K có
BA chung
\(\widehat{ABH}=\widehat{BAK}\)(hai góc ở đáy của ΔOAB cân tại O)
Do đó: ΔAHB=ΔBKA(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{HAB}=\widehat{KBA}\)(hai góc tương ứng)
hay \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIBA có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIBA cân tại I(Định lí đảo của tam giác cân)
Suy ra: IA=IB(hai cạnh bên)
Xét ΔOIA và ΔOIB có
OI chungIA=IB(cmt)
OA=OB(Gt)
Do đó: ΔOIA=ΔOIB(c-c-c)
Suy ra: \(\widehat{AOI}=\widehat{BOI}\)(hai góc tương ứng)
hay \(\widehat{xOI}=\widehat{yOI}\)
mà tia OI nằm giữa hai tia Ox, Oy
nên OI là tia phân giác của \(\widehat{xOy}\)(đpcm)
a: Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
=>ΔOAC=ΔOBC
b: ΔOAC=ΔOBC
=>góc OBC=90 độ
=>CB vuông góc Oy
c: OA=OB
CA=CB
=>OC là trung trực của AB
xét tam giác OIA và OIB có
OA=OB
\(\widehat{O_1}=\widehat{O_2}\)
OI chung
△OIA=△OIB(c.g.c)
gọi OI giao vs AB tại K
xét △AIK và △BIK có
IA=IB(cmt từ câu a)
\(\widehat{AIK}=\widehat{BIK}\)(cmt từ câu a)
IK chung
△AIK= △BIK(c.g.c)
=>\(\widehat{K_2}=\widehat{K_3}\)(2 góc t/ứng)
mà K∈AB=>\(\widehat{K_2}=\frac{180}{2}=90^o\)
=>OI⊥AB
và AK=KB (2 cạnh t/ứng )
mà I∈Ot=>Ot là đường trung trực của AB